Lesson 6. Introduction to Stochastic Processes

1 Overview

- A **stochastic process** is a sequence of random variables ordered by an index set
- Examples:

```
\circ \{S_n; n = 0, 1, 2, \dots\} = S_0, S_1, S_2, \dots \text{ with } \underline{\text{discrete}} \text{ index set } \{0, 1, 2, \dots\}
```

- ∘ $\{Y_t; t \ge 0\}$ with continuous index set $\{t \ge 0\}$
- The indices *n* and *t* are often referred to as "time"

```
• \{S_n; n = 0, 1, 2, ...\} is a discrete-time process
```

- ∘ $\{Y_t; t \ge 0\}$ is a **continuous-time process**
- The **state space** of a stochastic process is the range (possible values) of its random variables
 - State spaces can be discrete or continuous
 (i.e. the random variables of a stochastic process are discrete or continuous)
- A stochastic process can be described by the joint distribution of its component random variables
- Working with joint distributions can be unwieldy and have technical issues
- Instead, we can describe a stochastic process via an algorithm for generating its sample paths
- Recall: a **sample path** is a record of the time-dependent behavior of a system
 - A stochastic process generates sample paths
 - \diamond e.g. a sequence of random variates of S_0, S_1, S_2, \dots
- Today: an example

2 The Case of the Leaky Bit Bucket

Bit Bucket Computers specializes in installing and maintaining highly reliable computer systems. One of its standard configurations is to install a primary computer, an identical backup computer that is idle until needed, and provide a service contract that guarantees complete repair of a failed computer within 48 hours. If it has not fixed a computer within 48 hours, then it replaces the computer.

Computer systems are rated in terms of their "time to failure" (TTF). The engineers at Bit Bucket Computers have developed a probability distribution for the TTF of the individual computers and a probability distribution for the time required to complete repairs. They would like to have a TTF rating for the entire system. A failure of the system is when both computers are down simultaneously.

Some additional details from the engineers:

- TTF for a computer
 - Let X_i denote the TTF of the *i*th computer in service
 - $\circ X_1, X_2, \dots$ are independent and **time-stationary** (i.e. identically distributed) random variables with common cdf F_X
 - ⇒ A new computer and a computer that has just been repaired have the same TTF
 - F_X is the Weibull distribution with parameters $\alpha = 2$, $\beta = 812$
 - ⇒ Expected TTF is 720 hours (30 days) with standard deviation 376 hours (16 days)
 - ♦ Due to their flexible nature, Weibull distributions are commonly used for failure times
- Service time
 - Let R_i denote the time required to repair the *i*th computer failure
 - \circ R_1, R_2, \dots are independent and time-stationary random variables with common cdf F_R
 - \circ Based on service records, F_R is the uniform distribution on [4, 48]
- X_1, X_2, \ldots and R_1, R_2, \ldots are independent
 - ⇒ Repair time of a computer is not affected by its TTF or the number of times it has been repaired

3 Simulating the Leaky Bit Bucket

- We're interested in *D*, the time the entire system fails
- *D* is a random variable: a (complex) function of random variables X_1, X_2, \ldots and R_1, R_2, \ldots
- Let's generate values of X_1, X_2, \ldots and X_1, X_2, \ldots and use these to simulate values of D
- We can describe this simulation algorithmically
- System logic from Bit Bucket engineers:
 - After a system is installed, the primary computer is started
 - When it fails, the backup computer is immediately started and a service call is made to Bit Bucket
 - If the primary computer is repaired before the backup computer fails, then the primary computer becomes the backup computer, and the former backup computer remains the primary computer
 - o If at any time neither computer is available, the entire system fails
 - o Only one computer can be repaired at a time, and are repaired first-come-first-served

State space:		
ystem events of	nterest	
o <i>e</i> ₁ =		
o <i>e</i> ₂ =		
he clock time C	of system event e_i is the time the next system event of type e_i occurs	
When no ty	pe e_i event is pending, $C_i \leftarrow \infty$	
he n th event ep	och T_n is the time at which the n th system event occurs	
At T_{n+1} , the time	of the $(n + 1)$ st event, two things can happen:	
The system	state can change	
The clocks of	an be reset	
How exactly?		
et random() be	a function that generates variates for Uniform[0,1]	
ubroutine for sy	stem event e_1 :	
ubroutine for sy	etem event e_2 :	

$$e_0()$$
:
1: $S_0 \leftarrow 0$ (initially no computers down)
2: $C_1 \leftarrow F_X^{-1}(\text{random}())$ (set clock for first computer TTF)
3: $C_2 \leftarrow +\infty$ (no pending repair)

• Putting this all together:

algorithm BitBucketSimulation:

1:
$$n \leftarrow 0$$
 (initialize system event counter)
2: $T_0 \leftarrow 0$ (initialize event epoch)
3: $e_0()$ (execute initial system event)
4: $T_{n+1} \leftarrow \min\{C_1, C_2\}$ (advance time to next pending system event)
5: $I \leftarrow \arg\min\{C_1, C_2\}$ (find index of next system event)
6: $C_I \leftarrow \infty$ (event I no longer pending)
7: $e_I()$ (execute system event I)
8: $n \leftarrow n + 1$ (update event counter)
9: go to line 4

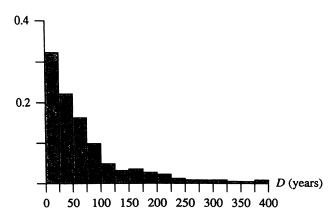
Example 1. Suppose the first five values generated by $F_X^{-1}(\text{random()})$ are 877, 1041, 612, 36, and 975. In addition, suppose the first four values generated by $F_R^{-1}(\text{random()})$ are 17, 8, 39, and 9. Generate the sample path using the algorithm BitBucketSimulation.

Event counter	System event	Time	State	Failure clock	Repair clock
n	I	T_n	S_n	C_1	C_2

• T_n is the time of the n th system event
• Let's combine these:
Y_t = number of down computers at time t for $t \ge 0$
or equivalently,
• The time average of Y_t up to the n th event epoch is
Example 2. Using your simulated sample path from Example 1, graph Y_t . What is the time average of Y_t up to the 8th event epoch?
Y_t 2 1
→ t
• Recall: we're interested <i>D</i> , the time of total system failure, which is:
ullet The value of D generated by our simulation in Example 1 is

• S_n is the number of down computers when the nth system event occurs

- To get information about the distribution of D, we run this simulation many times, say m = 500:
 - 1: **for** r = 1 to m **do**
 - 2: algorithm BitBucketSimulation
 - 3: end for
- Sample results:
 - ∘ Average of generated values of *D*: 551606 hours \approx 63 years
 - Histogram of generated values of *D*:



- \circ 2% of the generated values of *D* are less than 2 years
- Is this acceptable or unacceptable?