SA402 – Dynamic and Stochastic Models Asst. Prof. Nelson Uhan

Lesson 7. A General Stochastic Process Model

1 A general stochastic process model

- Let's generalize the Bit Bucket example from last time
- Notation: $\mathbf{S}_n = \begin{pmatrix} S_{1,n} \\ \vdots \\ S_{m,n} \end{pmatrix}$ is a vector of *m* random variables
- $\{\mathbf{S}_n; n = 0, 1, 2, ...\}$ is the state-change process
 - Represents all relevant information about system status
- $\{T_n; n = 0, 1, 2, ...\}$ is the event-epoch process
 - T_n is the time of the *n*th system event
- { Y_t ; $t \ge 0$ } is the **output process**, defined by $Y_t \leftarrow S_n$ for $t \in [T_n, T_{n+1})$
 - Connects state-changes with times that they occur
- Simulation algorithm
 - System events e_1, e_2, \ldots, e_k
 - ♦ Update the new system state S_{n+1} from previous system state S_n
 - ♦ Reset clocks C if necessary
 - Initial system event e_0
 - Clocks $\mathbf{C} = (C_1, C_2, \ldots, C_k)$

algorithm Simulation:

1:	$n \leftarrow 0$	(initialize system event counter)
	$T_0 \leftarrow 0$	(initialize event epoch)
	$e_0()$	(execute initial system event)
2:	$T_{n+1} \leftarrow \min\{C_1,\ldots,C_k\}$	(advance time to next pending system event)
	$I \leftarrow \arg\min\{C_1,\ldots,C_k\}$	(find index of next system event)
3:	$\mathbf{S}_{n+1} \leftarrow \mathbf{S}_n$	(temporarily maintain previous state)
	$C_I \leftarrow \infty$	(event <i>I</i> no longer pending)
4:	$e_I()$	(execute system event <i>I</i>)
	$n \leftarrow n+1$	(update event counter)
5:	go to line 2	

Fall 2013

- Comments:
 - $\mathbf{S}_{n+1} \leftarrow \mathbf{S}_n$ in Step 3 is for convenience
 - ♦ With this, system-event functions only need to specify changes in system state
 - By construction, (S_{n+1}, C) only depends on (S_n, C)
 - ♦ Don't need complete history of states, just the previous state
 - ♦ We will exploit this later
- A stochastic process is a model describing a collection of time-ordered <u>random variables</u> that represent possible sample paths
- A sample path is a collection of time-ordered <u>data</u> describing how a process actually did behave in one instance

2 The Case of Copy Enlargement, revisited

The Darker Image, a national chain of small photocopying shops, currently configures each store with one photocopying machine and one clerk. Arriving customers stand in a single line to wait for the clerk. The clerk completes the customers' photocopying jobs one at a time, first-come-first-served, including collecting payment for the job.

- Let's formulate a stochastic process model for the copy shop as it currently operates
- Assumptions:
 - $\circ~$ Interarrival times are independent with common cdf F_G
 - Service times are independent with common cdf F_X
 - Interarrival times and service times are independent
- System events:

• System state:

• System event algorithms:

• Output process:

- Time-average number of customers waiting for service over the first 6 hours:
- Time-average number of copiers in use the **utilization** of the copier over the first 6 hours:
- In words, what is $\int_0^6 Y_{1,t} dt$?