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Lesson 8. Arrival Counting Processes

1 Overview

● An arrival counting process is a stochastic process with one “arrival” system event type

● An “arrival” is broadly de�ned as any discrete unit that can be counted: for example,

○ customer arrivals
○ service requests
○ arrival of e-mail messages
○ accidents in a factory

2 �e Case of the Reckless Beehunter

Citizens of Beehunter have complained that a busy intersection has recently become more dangerous, and they
are demanding that the city council take action to make the intersection safer. �ere have been 103 accidents
at the intersection since record keeping began. �e city council agrees to undertake a study of the intersection
to determine if the accident rate has actually increased above the 1 per week average that is (unfortunately)
considered normal. It hires a tra�c engineer from nearby Vincennes, to perform the study.

�e tra�c engineer recommends that the number of accidents at the intersection be recorded for a 24-week
period. If the number of accidents is signi�cantly larger than expected, then shewill declare that the intersection
has indeed become more dangerous. During the study period, 36 accidents were observed.

● How can we quantify “signi�cantly larger”, or extreme behavior in general?

● Our approach:

○ Model the system as a stochastic process (algorithm that generates possible sample paths)
○ De�ne extreme behavior as a collection of sample paths that have relatively small probability of
being generated by this model

○ e.g. According to the model we construct, what is the probability that 36 accidents occur in a 24
week period?

● Let’s assume the interarrival times between accidents are independent and time stationary random
variables with common cdf FG and E[G] = 1 week

○ Is this reasonable?
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● State variables:

● System events:

● Simulation algorithm – just the general algorithm from before:

algorithm Simulation:
1: n ← 0 (initialize system event counter)
T0 ← 0 (initialize event epoch)
e0() (execute initial system event)

2: Tn+1 ← min{C1, . . . ,Ck} (advance time to next pending system event)
I ← argmin{C1, . . . ,Ck} (�nd index of next system event)

3: Sn+1 ← Sn (temporarily maintain previous state)
CI ←∞ (event I no longer pending)

4: eI() (execute system event I)
n ← n + 1 (update event counter)

5: go to line 2

● What does Sn equal for any n?

● Output process: Yt ← Sn for all Tn ≤ t < Tn+1, or in words,
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● A stochastic process model de�ned in the way above is called a renewal arrival counting process or
renewal process for short

○ In this case, “accidents”←→ “arrivals”

● Suppose we begin observing at time a weeks (a is some �xed constant)

● �e forward-recurrence time Ra at time a is the time that passes until the �rst accident a�er time a

● De�ne La as the length of the interarrival-time gap that contains time a

● An example of the output process for one sample path:
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● We can modify algorithm Simulation to compute Ra and La for a given sample path:

● �e number of accidents in the 24 week period we observe is

● What we’re interested in:

● What does this depend on?

○ �e distribution of the interarrival times G?
○ Only the expected interarrival time E[G]?
○ Does the time we start observing a matter?
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3 �ought experiment: interarrival time as a degenerate random variable

● Suppose Pr{G = 1} = 1

● �en E[G] = and Var(G) =

● Such a random variable (takes a single value with probability 1) is called degenerate

● In this case, Pr{Ya+24 − Ya = 24}

● If G has some randomness, then Pr{Ya+24 − Ya = 24}

● �erefore,

● Let’s assume G is degenerate again

● If we start observing at time a = 0, then the time until the �rst accident Ra

● If a = 1/4, then Ra

● �erefore,
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4 Simulation experiments: di�erent interarrival time distributions

● Let’s try two distributions for G:

1. Exponential distribution with parameter λ = 1 ⇒ E[G] = 1, Var(G) = 1
2. Weibull distribution with parameters α = 2, β = 2/

√
π ⇒ E[G] = 1, Var(G) = 0.25

● For each distribution, run algorithm Simulation 1000 times with a = 6

○ Record R6, L6, and Y30 − Y6 for each replication

● Histograms and summary statistics:

G ∼ Exponential(λ = 1)

○ Sample average of Y30 − Y6 ≈ 24

○ Sample average of R6 ≈ 1

○ Sample average of L6 ≈ 2

○ Estimated probability {Y30 − Y6 > 30} ≈ 0.10

G ∼Weibull(α = 2, β = 2/
√

π)

○ Sample average of Y30 − Y6 ≈ 24

○ Sample average of R6 ≈ 0.6

○ Sample average of Lt ≈ 1.3

○ Estimated probability {Y30 − Y6 > 30} ≈ 0.025

● When G ∼ Exp(λ = 1), R6 looks like an exponential distribution and has sample average ≈ E[G]

● Could it be that the distribution of Ra and G are the same in this case?

○ �is would be a nice property – suggests choice of a doesn’t matter
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