Lesson 9. The Poisson Arrival Process

1 Last time...

- Renewal arrival counting process (or renewal process for short)
 - Interarrival times are independent and time stationary with common $cdf F_G$
 - State variable:

 S_n = total number of arrivals up to and including the time of the *n*th system event

• System events:

$$e_0(): \text{ (initialization)} \\ 1: S_n \leftarrow 0 \qquad (\text{no arrivals initially}) \\ 2: C_1 \leftarrow F_G^{-1}(\text{random()}) \qquad (\text{set clock for first arrival})$$

$$\begin{array}{l} \text{(arrival)} \\ 1: \ S_{n+1} \leftarrow S_n + 1 \\ 2: \ C_1 \leftarrow T_{n+1} + F_G^{-1}(\texttt{random}()) \\ \end{array} (\text{one more arrival}) \\ \text{(set clock for next arrival)} \end{array}$$

• Simplified simulation algorithm:

algorithm Simulation:

1: $n \leftarrow 0$	(initialize system event counter)
$T_0 \leftarrow 0$	(initialize event epoch)
$e_0()$	(execute initial system event)
2: $T_{n+1} \leftarrow C_1$	(advance time to next pending system event)
$e_1()$	(execute system event)
$n \leftarrow n+1$	(update event counter)

- 3: go to line 2
- Events \leftrightarrow arrivals: $S_n = n$ for all n = 0, 1, 2, ...
- Event epoch process: T_n is the time of the *n*th arrival
- Output process: $Y_t = S_n$ for all $t \in [T_n, T_{n+1})$ is the total number of arrivals up to and including time t
- The forward-recurrence time R_a is the time that passes until the first arrival after time a
- From simulation experiments for the Beehunter case, when $G \sim \text{Exponential}(\lambda = 1)$, it looked like $R_6 \sim \text{Exponential}(\lambda = 1)$ as well
 - If this is true, it doesn't matter when we start observing the number of arrivals/accidents
- Today: let's look at the renewal process with $G \sim \text{Exponential}(\lambda)$
- known as the Poisson arrival process, or Poisson process for short

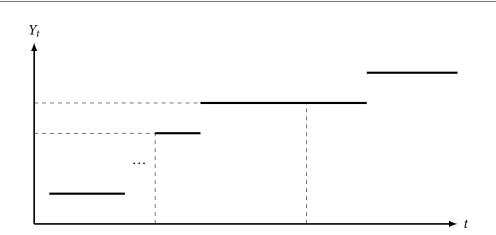
1

2 The Poisson arrival process

- Let G_i be the interarrival time between arrivals i 1 and i
- We can directly write the event epoch T_n as a function of the interarrival times G_1, \ldots, G_n :
- Since F_G is the exponential distribution with parameter λ , F_{T_n} is the Erlang distribution with parameter λ and *n* phases:

$$F_{T_n}(a) = 1 - \sum_{j=0}^{n-1} \frac{e^{-\lambda a} (\lambda a)^j}{j!}$$

• The output process Y_1, Y_2, \ldots and the event epoch process T_1, T_2, \ldots are fundamentally related:



- Therefore, we can get an explicit expression for the cdf of Y_t :
- And we can also get an expression for the pmf of Y_t :
- The pmf and cdf may look familiar: Y_t is a **Poisson random variable** with parameter λt

 $\Rightarrow E[Y_t] = \lambda t \qquad \operatorname{Var}(Y_t) = \lambda t$

Example 1. In the Beehunter case, the inter-accident times were exponentially distributed with parameter $\lambda = 1$. What is the probability that the total number of accidents at week 24 is greater than 30? (Your calculator can evaluate summations with many terms: use the **wife** button.)

3 Properties of the Poisson process

- Let $\Delta t > 0$ be a time increment
- The **independent-increments property**: the number of arrivals in nonoverlapping time intervals are independent random variables:
 - As a consequence:
- The stationary-increments property: the number of arrivals in a time increment of length Δt only depends on the length of the increment, not when it starts:
 - As a consequence:
 - $\Rightarrow \lambda$ can be interpreted as the **arrival rate** of the Poisson process
- The **memoryless property**: the forward-recurrence time *R*_t has the same distribution as the interarrival time:
- These properties make computing probability statements about sample paths of Poisson processes pretty easy

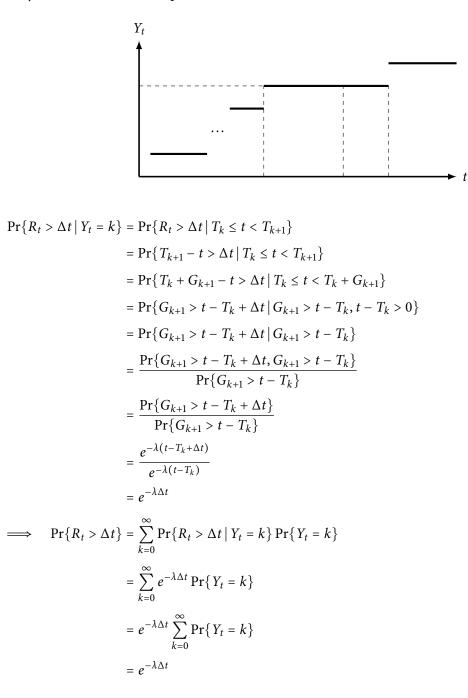
Example 2. Recall that in the Beehunter case, a total of 103 accidents have occurred at the intersection up to the time the traffic engineer starts observing, time *a*. What is the probability that more than 30 accidents are observed in the following 24 weeks?

Example 3. What is the probability there are 4 accidents at week 5, given that there are 2 accidents at week 4?

- Any arrival-counting process in which arrivals occur one-at-a-time and has independent and stationary increments must be a Poisson process
 - If you can justify your system having independent and stationary increments, then you can assume that interarrival times are exponentially distributed
 - This is a very deep powerful result

4 Why does the memoryless property hold?

- The memoryless property allows us to ignore when we start observing the Poisson process, since forward-recurrence times and interarrival times are distributed in the same way
- "Memoryless" ↔ how much time has passed doesn't matter
- Why is this true for Poisson processes?



- Therefore, $\Pr{\{R_t \le \Delta t\}} = 1 e^{-\lambda \Delta t}$, and so $R_t \sim \operatorname{Exp}(\lambda)$
- Along the way, we also showed that R_t and Y_t are independent

- Note: This proof is a little sketchy we actually need to condition on T_k instead of treating it as a constant
 - Works the same way, but with messier conditional statements and another use of the law of total probability
- The independent-increments and stationary-increments properties follow from the memoryless property and the fundamental relationship between Y_t and T_n (see Nelson pp. 110-111)