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Lesson 9. �e Poisson Arrival Process

1 Last time...

● Renewal arrival counting process (or renewal process for short)

○ Interarrival times are independent and time stationary with common cdf FG
○ State variable:

Sn = total number of arrivals up to and including the time of the nth system event

○ System events:
e0(): (initialization)
1: Sn ← 0 (no arrivals initially)
2: C1 ← F−1G (random()) (set clock for �rst arrival)

e1(): (arrival)
1: Sn+1 ← Sn + 1 (one more arrival)
2: C1 ← Tn+1 + F−1G (random()) (set clock for next arrival)

○ Simpli�ed simulation algorithm:
algorithm Simulation:
1: n ← 0 (initialize system event counter)
T0 ← 0 (initialize event epoch)
e0() (execute initial system event)

2: Tn+1 ← C1 (advance time to next pending system event)
e1() (execute system event)
n ← n + 1 (update event counter)

3: go to line 2

● Events←→ arrivals: Sn = n for all n = 0, 1, 2, . . .

● Event epoch process: Tn is the time of the nth arrival

● Output process: Yt = Sn for all t ∈ [Tn , Tn+1) is the total number of arrivals up to and including time t

● �e forward-recurrence time Ra is the time that passes until the �rst arrival a�er time a

● From simulation experiments for the Beehunter case, when G ∼ Exponential(λ = 1), it looked like
R6 ∼ Exponential(λ = 1) as well

○ If this is true, it doesn’t matter when we start observing the number of arrivals/accidents

● Today: let’s look at the renewal process with G ∼ Exponential(λ)
– known as the Poisson arrival process, or Poisson process for short
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2 �e Poisson arrival process

● Let Gi be the interarrival time between arrivals i − 1 and i

● We can directly write the event epoch Tn as a function of the interarrival times G1, . . . ,Gn:

● Since FG is the exponential distributionwith parameter λ, FTn is the Erlang distribution with parameter λ
and n phases:

FTn(a) = 1 −
n−1
∑
j=0

e−λa(λa) j
j!

● �e output process Y1,Y2, . . . and the event epoch process T1, T2, . . . are fundamentally related:

t

Yt

. . .

● �erefore, we can get an explicit expression for the cdf of Yt :

● And we can also get an expression for the pmf of Yt :

● �e pmf and cdf may look familiar: Yt is a Poisson random variable with parameter λt

⇒ E[Yt] = λt Var(Yt) = λt
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Example 1. In the Beehunter case, the inter-accident times were exponentially distributed with parameter λ = 1.
What is the probability that the total number of accidents at week 24 is greater than 30? (Your calculator can
evaluate summations with many terms: use the button.)

3 Properties of the Poisson process

● Let ∆t > 0 be a time increment

● �e independent-increments property: the number of arrivals in nonoverlapping time intervals are
independent random variables:

○ As a consequence:

● �e stationary-increments property: the number of arrivals in a time increment of length ∆t only
depends on the length of the increment, not when it starts:

○ As a consequence:

⇒ λ can be interpreted as the arrival rate of the Poisson process

● �ememoryless property: the forward-recurrence time Rt has the same distribution as the interarrival
time:

● �ese properties make computing probability statements about sample paths of Poisson processes pretty
easy
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Example 2. Recall that in the Beehunter case, a total of 103 accidents have occurred at the intersection up to
the time the tra�c engineer starts observing, time a. What is the probability that more than 30 accidents are
observed in the following 24 weeks?

Example 3. What is the probability there are 4 accidents at week 5, given that there are 2 accidents at week 4?

● Any arrival-counting process in which arrivals occur one-at-a-time and has independent and sta-
tionary increments must be a Poisson process

○ If you can justify your system having independent and stationary increments, then you can assume
that interarrival times are exponentially distributed

○ �is is a very deep powerful result
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4 Why does the memoryless property hold?

● �e memoryless property allows us to ignore when we start observing the Poisson process, since
forward-recurrence times and interarrival times are distributed in the same way

● “Memoryless”←→ how much time has passed doesn’t matter

● Why is this true for Poisson processes?

t

Yt

. . .

Pr{Rt > ∆t ∣Yt = k} = Pr{Rt > ∆t ∣Tk ≤ t < Tk+1}

= Pr{Tk+1 − t > ∆t ∣Tk ≤ t < Tk+1}

= Pr{Tk +Gk+1 − t > ∆t ∣Tk ≤ t < Tk +Gk+1}

= Pr{Gk+1 > t − Tk + ∆t ∣Gk+1 > t − Tk , t − Tk > 0}

= Pr{Gk+1 > t − Tk + ∆t ∣Gk+1 > t − Tk}

= Pr{Gk+1 > t − Tk + ∆t,Gk+1 > t − Tk}
Pr{Gk+1 > t − Tk}

= Pr{Gk+1 > t − Tk + ∆t}
Pr{Gk+1 > t − Tk}

= e−λ(t−Tk+∆t)

e−λ(t−Tk)

= e−λ∆t

Ô⇒ Pr{Rt > ∆t} =
∞
∑
k=0
Pr{Rt > ∆t ∣Yt = k}Pr{Yt = k}

=
∞
∑
k=0

e−λ∆t Pr{Yt = k}

= e−λ∆t
∞
∑
k=0
Pr{Yt = k}

= e−λ∆t

● �erefore, Pr{Rt ≤ ∆t} = 1 − e−λ∆t , and so Rt ∼ Exp(λ)

● Along the way, we also showed that Rt and Yt are independent
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● Note: �is proof is a little sketchy – we actually need to condition on Tk instead of treating it as a
constant

○ Works the same way, but with messier conditional statements and another use of the law of total
probability

● �e independent-increments and stationary-increments properties follow from thememoryless property
and the fundamental relationship between Yt and Tn (see Nelson pp. 110-111)
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