Lesson 11. Nonstationary Poisson Processes

1 Overview

- We've been looking at Poisson processes with a stationary arrival rate λ
- In other words, λ doesn't change over time
- Today: what happens when the arrival rate is nonstationary, ie. the arrival rate $\lambda(\tau)$ a function of time τ ?
- It turns out that a stationary Poisson process with arrival rate 1 can be transformed into a nonstationary Poisson process with any time-dependent arrival rate

2 An example

- Suppose we are conducting a time study of a helicopter maintenance facility
- Our data indicates that the facility is busier in the morning than in the afternoon:
- In the morning (0900-1300): expected interarrival time of 0.5 hours
- In the afternoon (1300-1700): expected interarrival time of 2 hours
- Let's say that $\tau=0$ corresponds to 0900
- Therefore, the arrival rate $\lambda(\tau)$ as a function of τ (in hours) is:

$$
\lambda(\tau)= \begin{cases}2 & \text { if } 0 \leq \tau<4 \\ \frac{1}{2} & \text { if } 4 \leq \tau<8\end{cases}
$$

- Using this, we can compute the integrated-rate function $\Lambda(\tau)$, or the expected number of arrivals by time τ :

$$
\begin{aligned}
& \Lambda(\tau)=\int_{0}^{\tau} \lambda(a) d a \\
& \text { If } \tau \in[0,4): \Lambda(\tau)=\int_{0}^{\tau} 2 d a=2 \tau \\
& \text { If } \tau \in[4,8): \Lambda(\tau)=\int_{0}^{4} 2 d a+\int_{4}^{\tau} \frac{1}{2} d a=8+\frac{1}{2}(\tau-4)=\frac{1}{2} \tau+6 \\
& \Rightarrow \Lambda(\tau)=\left\{\begin{array}{lll}
2 \tau & \text { if } 0 \leq \tau<4 \\
\frac{1}{2} \tau+6 & \text { if } & 4 \leq \tau<8
\end{array}\right.
\end{aligned}
$$

- A graph of the integrated-rate function $\Lambda(\tau)$:

- The inverse of the integrated-rate function $\Lambda(\tau)$:

$$
\begin{aligned}
& \text { Let } t=\Lambda(\tau) \\
& \text { If } t \in[0,8): t=2 \tau \Rightarrow t=\frac{1}{2} t \\
& \text { If } t \in[8,10): t=\frac{1}{2} \tau+6 \Rightarrow t=2(t-6) \\
& \Rightarrow \Lambda^{-1}(t)=\left\{\begin{array}{l}
\frac{1}{2} t \quad \text { if } 0 \leq t<8 \\
2(t-6) \text { if } 8 \leq t<10
\end{array}\right.
\end{aligned}
$$

- Key idea: τ and t represent different time scales connected by $t=\Lambda(\tau)$
- t represents time scale for stationary Poisson process with arrival rate 1
- τ represents time scale of nonstationary Poisson process
- Why does this work? Intuitively, can be seen from the graph above

3 Nonstationary Poisson processes, formally

- Let $\left\{Y_{t} ; t \geq 0\right\}$ be a Poisson process (in particular, its output process) with arrival rate 1 and arrival times $\left\{T_{n} ; n=0,1,2, \ldots\right\}$
- Define a new arrival counting process with output process $\left\{Z_{\tau} ; \tau \geq 0\right\}$ and arrival times $\left\{U_{n} ; n=0,1,2, \ldots\right\}$, where $U_{n}=\Lambda^{-1}\left(T_{n}\right)$
- The process $\left\{Z_{\tau} ; \tau \geq 0\right\}$ is (the output process of) a nonstationary Poisson process with integrated-rate function $\Lambda(\tau)$
- A nonstationary Poisson process $\left\{Z_{\tau} ; \tau \geq 0\right\}$ has the property:

$$
\begin{aligned}
& \operatorname{Pr}\left\{Z_{\tau+\Delta t}-Z_{\tau}=m \mid Z_{\tau}=k\right\}=\operatorname{Pr}\left\{Z_{\tau+\Delta t}-Z_{\tau}=m\right\} \\
& =\frac{e^{-[\Lambda(\tau+\Delta \tau)-\Lambda(t)]}[\Lambda(\tau+\Delta \tau)-\Lambda(\tau)]^{m}}{m!} \leftarrow \text { Poisson w/parameter }
\end{aligned}
$$

\circ As a consequence, the expected number of arrivals in $(\tau, \tau+\Delta \tau]$ is:

$$
E\left[z_{\tau+\Delta \tau}-z_{\tau}\right]=\Lambda(\tau+\Delta \tau)-\Lambda(\tau)
$$

- In particular, a nonstationary Poisson process satisfies the independent-increments property
- The probability distribution of the number of arrivals in $(\tau, \tau+\Delta \tau]$ depends on both $\Delta \tau$ and τ

$$
\Rightarrow \text { The stationary-increments and memoryless properties no longer apply }
$$

Example 1. In the maintenance facility example above:
a. What is the probability that 2 helicopters arrive between 1200 and 1400 , given that 5 arrived between 0900 and 1200 ?
b. What is the expected number of helicopters to arrive between 1200 and 1400 ?

$$
\begin{aligned}
& \text { a. } \operatorname{Pr}\left\{z_{5}-z_{3}=2 \mid z_{3}=5\right\}=\operatorname{Pr} \underbrace{\left.z_{5}-z_{3}=2\right\}=\frac{e^{-5 / 2}\left(\frac{5}{2}\right)^{2}}{2!} \approx 0.26}_{\substack{\text { Poisson } W / \text { parameter } \\
\Lambda(5)-\Lambda(3)=\frac{17}{2}-6=\frac{5}{2}}} \\
& \text { b. } E\left[z_{5}-z_{3}\right]=\Lambda(5)-\Lambda(3)=\frac{5}{2}
\end{aligned}
$$

Example 2. Think back to the Darker Image case. Suppose the copy shop is open from $0900(\tau=0)$ to 1500 ($\tau=360$), and the arrival-rate function is

$$
\lambda(\tau)= \begin{cases}1 / 6 & \text { if } 0 \leq \tau<180 \\ 1 / 5 & \text { if } 180 \leq \tau<360\end{cases}
$$

a. What is the expected number of customers by time τ ?
b. What is the probability that 5 customers arrive between 1100 and 1300 ?
c. What is the expected number of customers that arrive between 1100 and 1300 ?
d. If 15 customers have arrived by 1100, what is the probability that more than 60 customers will have arrived throughout the course of the day?

$$
\begin{aligned}
& \text { a. } \Lambda(\tau)=\int_{0}^{\tau} \lambda(a) d a \\
& \text { If } \tau \in[0,180): \Lambda(\tau)=\int_{0}^{\tau} \frac{1}{6} d a=\frac{\tau}{6} \\
& \text { If } \left.\tau \in[0,180): \begin{array}{rl}
\Delta(\tau) & =\int_{0}^{\tau} \frac{1}{6} d a=\frac{\tau}{6} \\
\text { If } \tau \in[180,360): \Delta(\tau) & =\int_{0}^{180} \frac{1}{6} d a+\int_{180}^{\tau} \frac{1}{5} d a \\
& =30+\frac{1}{5}(\tau-180)
\end{array}\right\} \Delta(\tau)= \begin{cases}\frac{\tau}{6} & \text { if } 0 \leq \tau<180 \\
\frac{1}{5} \tau-6 & \text { if } 180 \leq \tau<360\end{cases} \\
& =\frac{1}{5} \tau-6 \\
& \text { b. } \left.\operatorname{Pr}\{\underbrace{Y_{240}-Y_{120}}=5\}=\frac{e^{-22}(22)^{5}}{5!} \approx 0.000012 \right\rvert\, \text { c. } E\left[Y_{240}-Y_{120}\right]=\Lambda(240)-\Lambda(120) \\
& \text { Poisson "/parameter } \\
& \Lambda(240)-\Lambda(120)=42-20=22 \\
& \text { d. } \operatorname{Pr}\left\{Y_{360}>60 \mid Y_{120}=15\right\}=\operatorname{Pr}\left\{Y_{360}-Y_{120}>45 \mid Y_{120}=15\right\}=\operatorname{Pr}\left\{Y_{360}-Y_{120}>45\right\} \\
& =1-\operatorname{Pr}\{\underbrace{Y_{360}-Y_{120}}_{\omega 1} \leq 45\}=1-\sum_{j=0}^{45} \frac{e^{-46}(46)^{j}}{j!} \approx 0.52 \\
& \text { Poisson } \mathrm{W} / \text { pram } \\
& \Lambda(360)-\Lambda(120)=66-20=46
\end{aligned}
$$

4 Why does a nonstationary Poisson process behave this way?

- Here's a short proof. Let's walk through it step-by-step:

$$
\begin{aligned}
\operatorname{Pr}\left\{Z_{\tau+\Delta \tau}-Z_{\tau}=m \mid Z_{\tau}=k\right\} & \left.=\operatorname{Pr}\left\{Y_{\Lambda(\tau+\Delta \tau)}-Y_{\Lambda(\tau)}=m \mid Y_{\Lambda(\tau)}=k\right\} \quad \text { (defn. of } Z_{\tau}\right) \\
& =\operatorname{Pr}\left\{Y_{\Lambda(\tau+\Delta \tau)}-Y_{\Lambda(\tau)}=m\right\}\left(Y_{t}\right. \text { is a stationary Poisson process, independent } \\
& =\operatorname{Pr}\left\{Z_{\tau+\Delta \tau}-Z_{\tau}=m\right\}\left(\text { defn. of } Z_{\tau}\right)
\end{aligned}
$$

Also:

$$
\begin{aligned}
& \operatorname{Pr}\left\{Z_{\tau+\Delta \tau}-Z_{\tau}=m \mid Z_{\tau}=k\right\}=\operatorname{Pr}\left\{Y_{\Lambda(\tau+\Delta \tau)}-Y_{\Lambda(\tau)}=m\right\} \quad \text { (same as above) } \\
&=\operatorname{Pr}\left\{Y_{\Lambda(\tau+\Delta \tau)-\Lambda(\tau)}=m\right\} \quad\left(Y_{t}\right. \text { is a stationary Poisson } \\
&=\frac{e^{-[\Lambda(\tau+\Delta \tau)-\Lambda(\tau)]}[\Lambda(\tau+\Delta \tau)-\Lambda(\tau)]^{m}}{m!} \quad \text { process w/rate 1, stationary } \\
& \text { Increments) }
\end{aligned}
$$

