Lesson 13. Nonstationary Poisson Processes - Review

- Consider a Poisson process with arrival rate 1:
- Interarrival times: $G_{n} \sim$ Exponential(1)
- Time of the nth arrival: $T_{n} \sim \operatorname{Erlang}(1, n)$
- Number of arrivals up to time $t: Y_{t} \sim \operatorname{Poisson}(t)$
- A nonstationary Poisson process is a renewal arrival counting process that transforms a Poisson process with arrival rate 1 in the following way:
- The arrival rate $\lambda(\tau)$ is the expected number of arrivals per unit time at time τ
- The integrated-rate function is the expected number of arrivals by time τ :

$$
\Lambda(\tau)=\int_{0}^{\tau} \lambda(a) d a
$$

- Time of nth arrival: $U_{n}=\Lambda^{-1}\left(T_{n}\right)$
- Number of arrivals in $(\tau, \tau+\Delta \tau]$:

$$
Z_{\tau+\Delta \tau}-Z_{\tau} \sim \operatorname{Poisson}(\Lambda(\tau+\Delta \tau)-\Lambda(\tau))
$$

\Rightarrow Expected number of arrivals in $(\tau, \tau+\Delta \tau]:$

$$
E\left[Z_{\tau+\Delta \tau}-Z_{\tau}\right]=\Lambda(\tau+\Delta \tau)-\Lambda(\tau)
$$

- A nonstationary Poisson process satisfies the independent-increments property: number of arrivals in nonoverlapping intervals are independent

$$
\operatorname{Pr}\left\{Z_{\tau+\Delta \tau}-Z_{\tau}=m \mid Z_{\tau}=k\right\}=\operatorname{Pr}\left\{Z_{\tau+\Delta \tau}-Z_{\tau}=m\right\}=\frac{e^{-[\Lambda(\tau+\Delta \tau)-\Lambda(\tau)]}[\Lambda(\tau+\Delta \tau)-\Lambda(\tau)]^{m}}{m!}
$$

- Stationary-increments and memoryless properties do not hold
- For proofs, take a look at the end of Lesson 11 (not too hard)
- "Nonstationary" also known as "nonhomogeneous" or "inhomogeneous"

Example 1. Customers arrive at Cantor's Car Repair according to a nonstationary Poisson process with rate

$$
\lambda(\tau)= \begin{cases}2 & \text { if } 0 \leq \tau<3 \\ 1 / 3 & \text { if } 3 \leq \tau<9 \\ 2 & \text { if } 9 \leq \tau<12\end{cases}
$$

where time is measured in hours, and time 0 is 6 a.m.
a. What is the integrated rate function?
b. What is the inverse of the integrated rate function?

- The graph of $\Lambda(\tau)$ in Example 1 looks like:

- Let τ be the time scale for the nonstationary Poisson process with rate $\lambda(\tau)$
- Let t be the time scale for the stationary Poisson process with rate 1
- The two time scales are connected:

$$
t=\Lambda(\tau) \quad \Leftrightarrow \quad \tau=\Lambda^{-1}(t)
$$

Example 2. At Cantor's Car Repair, what is the probability that the doctor will see more than 4 customers from 8 a.m to 10 a.m.? What is the expected number of customers in this time period?
\square
Example 3. At Cantor's Car Repair, if 6 customers have arrived by noon, what is the probability that at least 12 customers will have arrived by 6 p.m.?
\square
Example 4. At Cantor's Car Repair, what is the probability that the 10th customer arrives by 4 p.m.?

Example 5. At Cantor's Car Repair, what is the probability that at most 1 customer arrives between 4 p.m and 6 p.m.?
\square

Food for thought

- We defined a nonstationary Poisson process as a transformation from a stationary Poisson process
- What if we wanted to define a nonstationary Poisson process directly as a renewal arrival counting process?
- We would need a distribution for the interarrival times to define the simulation model
- One can derive a conditional cdf for the interarrival times H_{n} :

$$
F_{H_{n+1} \mid U_{n}=\tau}(\alpha)=\operatorname{Pr}\left\{H_{n+1} \leq \alpha \mid U_{n}=\tau\right\}=1-e^{-[\Lambda(\tau+\alpha)-\Lambda(\tau)]}
$$

