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Lesson 14. Introduction to Markov Chains

1 Overview

● We characterized the sample path of a stochastic process as a sequence of state changes (the Sn’s)
occurring at random points in time (the Tn’s)

● In some settings, we care more about the state changes than the time at which the changes occur

● Today: a stochastic process model that focuses on the transitions between states

2 �e Case of the Random Behavior

Jungle.com is an online retailer that sells everything from books to toothbrushes. �eir data analytics group is
currently evaluating changes to Jungle.com’s computer architecture, and needs a model that describes customer
behavior. �e group has identi�ed four key types of customer transactions:

(1) visit the Jungle.com home page to start shopping (“log on”),
(2) fetch the main page of a product,
(3) fetch and read the reviews of a product, and
(4) �nish shopping by checking out or closing the browser (“log o�”).

A session is a sequence of transactions that begins with a log on (1) and ends with a log o� (4).

�e data analytics group believes that the next transaction a customer requests is strongly in�uenced by the last
(most recent) transaction requested, and not signi�cantly in�uenced by anything else. For a given customer,
let

● N be a random variable representing the next transaction a customer requests, and
● L be a random variable representing the last transaction requested.

Based on its substantial historical data, it has determined the following conditional pmfs:

a 1 2 3 4
pN ∣L=1(a) 0 0.95 0.01 0.04
pN ∣L=2(a) 0 0.27 0.63 0.10
pN ∣L=3(a) 0 0.36 0.40 0.24
pN ∣L=4(a) 0 0 0 1

Denote the corresponding conditional cdfs as FN ∣L=1, FN ∣L=2, FN ∣L=3, FN ∣L=4.

● Let’s model the transitions between customer transaction types as a stochastic process

● State variables:
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● System events:

● In thismodel, n =

● We don’t keep track of event epochs, so our algorithm Simulation can be simpli�ed to:

algorithm Simulation:
1: n ← 0 (initialize system-event counter)
e0() (execute initial system event)

2: e1() (update state of the system)
n ← n + 1 (update system-event counter)

3: go to line 2

● Since pN ∣L=4(4) = 1, once a sample path reaches state 4, it stays there

● �e stochastic process model above – with the property that the probability distribution of the next
state only depends on the last state – is called aMarkov chain

● We can generalize this model so that the initial state is allowed to be a random variable with cdf FS0 :

○ In the Jungle.com case, we can think of S0 as a degenerate random variable with Pr{S0 = 1} = 1
to model that a session always begins with a log on
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3 Markov chains

● Discrete-time, discrete-state stochastic process {Sn; n = 0, 1, 2, . . . }

● State spaceM= {1, . . . ,m}

● States evolve according to the algorithmic model above

● {Sn; n = 0, 1, 2, . . . } is aMarkov chain if:

○ In other words, {Sn; n = 0, 1, 2, . . . } satis�es the Markov property: the conditional probability of
the next state given the history of past states only depends on the last state

○ As a consequence:

Example 1. Recall that the performance-modeling group at Jungle.com believes that the next transaction a
customer requests is essentially solely in�uenced by the last transaction requested. Compute the probability of
the sequence of transactions 1, 2, 2, 4.

● AMarkov chain is time-stationary if:

○ In other words, the conditional probability of the next state given the last one does not depend on
when the number of time steps taken so far

○ As a consequence:
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● In this course, we assume that Markov chains are time-stationary unless told otherwise

● For a time-stationary Markov chain, the one-step probabilities pi j are de�ned as:

● �e initial-state probabilities pi are de�ned as:

Example 2. Assuming time-stationarity, express the probability of the sequence of transactions 1, 2, 2, 4 in
terms of the one-step transition and initial-state probabilities.

● �e sample paths of a time-stationary Markov chain are completely characterized by a corresponding
sequence of one-step transition probabilities and initial-state probabilities

4



4 Representations of Markov chains

● We can organize the one-step transition probabilities into a one-step transition matrix:

P =
⎛
⎜⎜⎜
⎝

p11 p12 . . . p1m
p21 p22 . . . p2m
⋮ ⋮ ⋱ ⋮

pm1 pm2 . . . pmm

⎞
⎟⎟⎟
⎠

● We can also organize the initial-state probabilities into a initial-state vector:

p =
⎛
⎜⎜⎜
⎝

p1
p2
⋮
pm

⎞
⎟⎟⎟
⎠

● We can also draw a transition probability diagram where

○ each node represents a state of the system
○ a directed arc connects state i to state j if a one-step transition from i to j is possible
○ the one-step transition probability pi j is written next to the arc from i to j

Example 3.
a. Write the one-step transition matrix and initial-state vector for the Jungle.comMarkov chain.
b. Draw the transition probability diagram for the Jungle.comMarkov chain.
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5 Next time...

● Using the one-step transition matrix P and initial-state vector p to answer questions like:

○ Given that we are in state i right now, what is the probability we will be in state j a�er n time steps?
○ What is the unconditional probability we will be in state j a�er n time steps?

6


