Lesson 16. Markov Chains - Time-Independent Performance Measures

0 Warm up

Example 1. An autonomous UAV has been programmed to move between several regions to perform surveillance. The UAV is currently located in region 1, and moves between regions 1, 2, 3, and 4 according to a Markov chain with the following transition-probability diagram:

- a. What is the one-step transition probability matrix?
- b. What is the probability that the UAV is in region 3 in three time steps?
- c. Suppose the UAV is in region 2. What is the probability it is in region 4 in three time steps?

1 Overview

• Last time: performance measures that depend on the number of time steps, for example

$$p_{ij}^{(n)} = \Pr\{S_n = j | S_0 = i\}$$
 $p_j^{(n)} = \Pr\{S_n = j\}$

• Today: what happens in the **long run**, i.e. as $n \to \infty$? In particular, what is the **limiting probability**

$$p_{ij}^{(\infty)} = \lim_{n \to \infty} p_{ij}^{(n)} ?$$

• Note: the text uses \vec{p}_{ij} instead of $p_{ij}^{(\infty)}$

2 Classification of states

• As usual, suppose we have a Markov chain with state space $\mathcal{M} = \{1, \dots, m\}$

Periodic and aperiodic states

• Consider the following two-state Markov chain:

- The *n*-step transition probability between state 1 and itself is:
- A state $i \in \mathcal{M}$ is **periodic** with period δ (δ is a positive integer) if

$$p_{ii}^{(n)} \begin{cases} > 0 & \text{if } n = \delta, 2\delta, 3\delta, \dots \\ = 0 & \text{otherwise} \end{cases}$$

and therefore $p_{ii}^{(\infty)} = \lim_{n \to \infty} p_{ii}^{(n)}$ does not exist

- A state $i \in \mathcal{M}$ is **aperiodic** if it is not periodic
- In this class, we do not consider $p_{ij}^{(\infty)}$ for periodic states j

Transient and recurrent states

• Consider the following two-state Markov chain:

• The limiting probability between state 1 and itself is:

• In other words, the process eventually leaves state 1 and never return

- A state $i \in \mathcal{M}$ is **transient** if $p_{ii}^{(\infty)} = 0$
 - The process will eventually leave state *i* and never return
- A state $i \in \mathcal{M}$ is **recurrent** if $p_{ii}^{(\infty)} > 0$
 - The process is guaranteed to return to state *i* over and over again, given that it reaches state *i* at some time

Example 2. Consider the Markov chain in the UAV example.

Can you guess which states are transient and which states are recurrent?

- A subset of states \mathcal{R} irreducible if
 - $\circ~\mathcal{R}$ forms a self-contained Markov chain
 - $\circ~$ no proper subset of ${\cal R}$ also forms a Markov chain
- Otherwise the subset \mathcal{R} is **reducible**
- To find transient and recurrent states of a Markov chain:
 - 1. Find all irreducible proper subsets of the state space
 - If there are no such subsets, the entire state space is irreducible
 - 2. All states in an irreducible set are recurrent
 - 3. All states not in an irreducible set are transient

3 Performance measures

- Based on the classification of states, we can compute the limiting probabilities $p_{ii}^{(\infty)}$
- Case 1. If state *j* is transient, then
 - state *j* is transient \Rightarrow will eventually leave state *j* and never return
- Case 2. If states *i* and *j* are in different irreducible sets of states, then
 - state i is one self-contained Markov chain, state j is in another
- Case 3. If states *i* and *j* are in the same irreducible set of states \mathcal{R} , then
 - $p_{ii}^{(\infty)} = \pi_i$, for some $\pi_i > 0$, does not depend on *i*
 - Let $\vec{\pi}_{\mathcal{R}}$ be a vector whose elements are π_j for $j \in \mathcal{R}$
 - We can compute π_i by solving the following system of linear equations:

- The π_i are called **steady-state probabilities**
- Interpretation: given that the process reaches the irreducible set containing state j, π_i is
 - ♦ the probability of finding the process in state *j* after a long time, or
 - \diamond the long-run fraction of time that the process spends in state *j*
- Note that by construction, the steady-state probabilities add up to 1

Example 3. Consider the UAV example again. Suppose the UAV reaches region 2 at some point. What is the long-run fraction of time that the UAV spends in region 2? Region 3?

• **Case 4.** If state *i* is transient and state *j* is an **absorbing** state (i.e. state *j* is the only state in an irreducible set of states $\mathcal{R} = \{j\}$), then

•
$$p_{ij}^{(\infty)} = \alpha_{ij}$$
 for some $\alpha_{ij} \ge 0$

- $\circ~$ Let ${\cal T}$ be the set of transient states
- Let $\alpha_{\mathcal{TR}}$ be the vector whose elements are α_{ij} for $i \in \mathcal{T}$ (remember $\mathcal{R} = \{j\}$)
- We can find the α_{ij} 's using:
- The α_{ij} are called **absorption probabilities**
 - ♦ What is the probability that the process is ultimately "absorbed" at state *j*?

Example 4. Consider the UAV example again. What is the probability that the UAV is in region 4?

4 Why are the steady-state probabilities computed this way?

- Some details in Nelson, pp. 153-154
- Intuition: in steady state, we have that

frequency of being in state j = frequency of transitions into state j

5 If we have time... (if not, finish for homework)

Example 5 (Nelson 6.6b, modified).

a. Classify as recurrent or transient the states of the Markov chain with state space $\{1, 2, 3, 4, 5\}$ and the one-step transition matrix below by first finding all of the irreducible subsets of states.

$$\mathbf{P} = \begin{pmatrix} 0.1 & 0.5 & 0.1 & 0.1 & 0.2 \\ 0.0 & 0.8 & 0.0 & 0.0 & 0.2 \\ 0.0 & 0.0 & 0.3 & 0.0 & 0.7 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 & 0.0 & 0.5 \\ \end{pmatrix}$$

b. For each irreducible set of states, find the steady-state probabilities.