Lesson 16. Markov Chains - Time-Independent Performance Measures

0 Warm up

Example 1. An autonomous UAV has been programmed to move between several regions to perform surveillance. The UAV is currently located in region 1 , and moves between regions $1,2,3$, and 4 according to a Markov chain with the following transition-probability diagram:

a. What is the one-step transition probability matrix?
b. What is the probability that the UAV is in region 3 in three time steps?
c. Suppose the UAV is in region 2 . What is the probability it is in region 4 in three time steps?

1 Overview

- Last time: performance measures that depend on the number of time steps, for example

$$
p_{i j}^{(n)}=\operatorname{Pr}\left\{S_{n}=j \mid S_{0}=i\right\} \quad \quad p_{j}^{(n)}=\operatorname{Pr}\left\{S_{n}=j\right\}
$$

- Today: what happens in the long run, i.e. as $n \rightarrow \infty$? In particular, what is the limiting probability

$$
p_{i j}^{(\infty)}=\lim _{n \rightarrow \infty} p_{i j}^{(n)} ?
$$

- Note: the text uses $\vec{p}_{i j}$ instead of $p_{i j}^{(\infty)}$

2 Classification of states

- As usual, suppose we have a Markov chain with state space $\mathcal{M}=\{1, \ldots, m\}$

Periodic and aperiodic states

- Consider the following two-state Markov chain:

- The n-step transition probability between state 1 and itself is:
\square
- A state $i \in \mathcal{M}$ is periodic with period $\delta(\delta$ is a positive integer) if

$$
p_{i i}^{(n)} \begin{cases}>0 & \text { if } n=\delta, 2 \delta, 3 \delta, \ldots \\ =0 & \text { otherwise }\end{cases}
$$

and therefore $p_{i i}^{(\infty)}=\lim _{n \rightarrow \infty} p_{i i}^{(n)}$ does not exist

- A state $i \in \mathcal{M}$ is aperiodic if it is not periodic
- In this class, we do not consider $p_{i j}^{(\infty)}$ for periodic states j

Transient and recurrent states

- Consider the following two-state Markov chain:

- The limiting probability between state 1 and itself is:
\square
- In other words, the process eventually leaves state 1 and never return
- A state $i \in \mathcal{M}$ is transient if $p_{i i}^{(\infty)}=0$
- The process will eventually leave state i and never return
- A state $i \in \mathcal{M}$ is recurrent if $p_{i i}^{(\infty)}>0$
- The process is guaranteed to return to state i over and over again, given that it reaches state i at some time

Example 2. Consider the Markov chain in the UAV example.

Can you guess which states are transient and which states are recurrent?
\square

- A subset of states \mathcal{R} irreducible if
- \mathcal{R} forms a self-contained Markov chain
- no proper subset of \mathcal{R} also forms a Markov chain
- Otherwise the subset \mathcal{R} is reducible
- To find transient and recurrent states of a Markov chain:

1. Find all irreducible proper subsets of the state space

- If there are no such subsets, the entire state space is irreducible

2. All states in an irreducible set are recurrent
3. All states not in an irreducible set are transient

3 Performance measures

- Based on the classification of states, we can compute the limiting probabilities $p_{i j}^{(\infty)}$
- Case 1. If state j is transient, then \square
- state j is transient \Rightarrow will eventually leave state j and never return
- Case 2. If states i and j are in different irreducible sets of states, then \square
- state i is one self-contained Markov chain, state j is in another
- Case 3. If states i and j are in the same irreducible set of states \mathcal{R}, then
- $p_{i j}^{(\infty)}=\pi_{j}$, for some $\pi_{j}>0$, does not depend on i
- Let $\vec{\pi}_{\mathcal{R}}$ be a vector whose elements are π_{j} for $j \in \mathcal{R}$
- We can compute π_{j} by solving the following system of linear equations:
- The π_{j} are called steady-state probabilities
- Interpretation: given that the process reaches the irreducible set containing state j, π_{j} is
\diamond the probability of finding the process in state j after a long time, or
\diamond the long-run fraction of time that the process spends in state j
- Note that by construction, the steady-state probabilities add up to 1

Example 3. Consider the UAV example again. Suppose the UAV reaches region 2 at some point. What is the long-run fraction of time that the UAV spends in region 2? Region 3?

- Case 4. If state i is transient and state j is an absorbing state
(i.e. state j is the only state in an irreducible set of states $\mathcal{R}=\{j\}$), then
- $p_{i j}^{(\infty)}=\alpha_{i j}$ for some $\alpha_{i j} \geq 0$
- Let \mathcal{T} be the set of transient states
- Let $\alpha_{\mathcal{T} \mathcal{R}}$ be the vector whose elements are $\alpha_{i j}$ for $i \in \mathcal{T}$ (remember $\mathcal{R}=\{j\}$)
- We can find the $\alpha_{i j}$'s using:
\square
- The $\alpha_{i j}$ are called absorption probabilities
\diamond What is the probability that the process is ultimately "absorbed" at state j ?
Example 4. Consider the UAV example again. What is the probability that the UAV is in region 4?

4 Why are the steady-state probabilities computed this way?

- Some details in Nelson, pp. 153-154
- Intuition: in steady state, we have that
frequency of being in state $j=$ frequency of transitions into state j

5 If we have time... (if not, finish for homework)
Example 5 (Nelson 6.6b, modified).
a. Classify as recurrent or transient the states of the Markov chain with state space $\{1,2,3,4,5\}$ and the one-step transition matrix below by first finding all of the irreducible subsets of states.

$$
\mathbf{P}=\left(\begin{array}{lllll}
0.1 & 0.5 & 0.1 & 0.1 & 0.2 \\
0.0 & 0.8 & 0.0 & 0.0 & 0.2 \\
0.0 & 0.0 & 0.3 & 0.0 & 0.7 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.5 & 0.0 & 0.0 & 0.5
\end{array}\right)
$$

b. For each irreducible set of states, find the steady-state probabilities.

