What if every transition is independent of the previous state?

Suppose S_{n+1} – the state at time step n + 1 – is independent of S_0, S_1, \ldots, S_n – the entire history of states up to and including time step n:

$$\Pr\{S_{n+1} = j \mid S_n = i, S_{n-1} = a, \dots, S_0 = z\} = \Pr\{S_{n+1} = j\}.$$
(1)

Note that in this case, S_{n+1} does not even depend on S_n .

Since we assumed that S_{n+1} and S_n are independent,

$$\Pr\{S_{n+1} = j\} = \Pr\{S_{n+1} = j | S_n = i\}.$$
(2)

As a result, the Markov property still holds, since equations (1) and (2) imply:

$$\Pr\{S_{n+1} = j \mid S_n = i, S_{n-1} = a, \dots, S_0 = z\} = \Pr\{S_{n+1} = j \mid S_n = i\}.$$

In words, the Markov property says that the only thing that S_{n+1} can possibly depend on is S_n . So if S_{n+1} doesn't depend on anything, not even S_n , the Markov property is still satisfied.