
SA402 – Dynamic and Stochastic Models Fall 2013
Asst. Prof. Nelson Uhan

Lesson 18. A Quick Start Guide to Markov Processes

1 Overview

● Last few lessons: A Markov chain is a stochastic process that focuses on the state changes,
ignoring the actual times at which the changes occur, e.g.

○ Visiting di�erent page types on Jungle.com
○ Movements of a UAV between di�erent regions

● Today: let’s look atMarkov processes, which are similar to Markov chains, but also incorporate the
time between state changes

○ We will eventually use these as a framework to study queueing processes

2 An algorithmic model of a Markov process

● State spaceM = {0, 1, 2, . . . ,m}

○ By convention we include 0
○ For example, the state might represent number of customers in a queue

● State-change process:
Sn = nth state visited for n = 0, 1, 2, . . .

● Initial state probabilities p j for each j ∈M with cdf FS0

● Transition rate gi j from state i to state j (i ≠ j)

● Transition times Hi j ∼ Exponential(gi j) from state i to state j (i ≠ j)

○ All Hi j’s are independent of each other

● System events:

ei(): (go to state i, for i = 0, 1, . . . ,m)
1: Sn+1 ← i (next state is i)
2: for j = 0 to m, j ≠ i do
3: C j ← Tn+1 + F−1H i j

(random()) (set clocks according to transition rates)
4: end for

einit(): (initialization)
1: S0 ← F−1S0 (random()) (initial state)
2: for j = 0 to m, j ≠ S0 do
3: C j ← Tn+1 + F−1HS0 , j

(random()) (set clocks according to transition rates)
4: end for

1



● �e same simulation framework as before (with some minor notation changes):

algorithm Simulation:
1: n ← 0 (initialize system event counter)
T0 ← 0 (initialize event epoch)
einit() (execute initial system event)

2: Tn+1 ← min{C0, . . . ,Cm} (advance time to next pending system event)
I ← argmin{C0, . . . ,Cm} (�nd index of next system event)

3: Sn+1 ← Sn (temporarily maintain previous state)
CI ←∞ (event I no longer pending)

4: eI() (execute system event I)
n ← n + 1 (update event counter)

5: go to line 2

● Output process – the state at time t:
Yt = Sn for all t ∈ [Tn , Tn+1)

● What’s going on here?

○ Suppose the process is in state i
○ �e transition time from state i to state j is Hi j ∼ Exponential(gi j)
○ �e next state is the one with the lowest transition time

● �e transition rates implicitly de�ne the probability of transitioning from one state to the next

● We can draw a transition rate diagram for a Markov process, in the same way as the transition proba-
bility diagram for a Markov chain, using the transition rates instead of transition probabilities as arc
labels

Example 1. Suppose a system has two components that work in series: if one component fails, then the system
fails. For each i ∈ {1, 2}, the time until component i fails is exponentially distributed with parameter λi , and
the time to repair component i is also exponentially distributed with parameter µi . Model this setting as a
Markov process. Draw the transition rate diagram.
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3 Time until next transition

● �e overall transition rate out of state i is gii =∑
j≠i

gi j

● Suppose Sn = i (at time Tn)

● �e time of the next event (next transition) is:

Tn+1 = min
j=0,...,m, j≠i

{Tn +Hi j} = Tn + min
j=0,...,m, j≠i

{Hi j}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=H i

● Hi is called the holding time in state i

● Hi is the minimum of m independent exponential random variables:

Hi j ∼ Exponential(gi j) for j = 0, . . . ,m, j ≠ i

⇒ Hi ∼ Exponential(∑ j≠i gi j) = Exponential(gii)

● In words, the time until the next transition is exponentially distributed with rate gii

4 �e Markov and time stationarity properties

● �eMarkov property: only the state of the process at the current time t matters for probability state-
ments about future times:

Pr{Yt+∆t = j ∣Yt = i and Ya for all a < t} = Pr{Yt+∆t = j ∣Yt = i}

● �e time-stationarity property: only the time increment matters, not the starting time:

Pr{Yt+∆t = j ∣Yt = i} is the same for all t ≥ 0

● Powerful fact:

○ Let {Yt ; t ≥ 0} be a continuous-time stochastic process with discrete state space
○ Suppose {Yt ; t ≥ 0} satis�es the Markov and time stationarity properties
⇒ {Yt ; t ≥ 0}must be a Markov process with some transition probabilities gi j
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5 Steady state probabilities

● �e steady state probability of being in state j:

π j = limt→∞Pr{Yt = j}

○ probability of �nding the process in state j a�er a long period of time
○ long-run fraction of time the process is in state j

● How do we compute these probabilities?

○ Over the long run, the transition rate into state j is

○ Over the long run, the transition rate out of state j is

○ �ese quantities should be equal in steady state

● In matrix form:

○ G is the generator matrix of the Markov process:

G =
⎛
⎜⎜⎜
⎝

−g00 g01 ⋯ g0m
g10 −g11 ⋯ g1m
⋮ ⋱ ⋮

gm0 gm1 ⋯ −gmm

⎞
⎟⎟⎟
⎠

○ �en the steady state probabilities can be found by solving

π⊺G = 0
π⊺1 = 1

Example 2. Find the steady-state probabilities of the Markov process described in Example 1.
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Example 3 (Nelson 7.5, modi�ed). �e Football State University motor pool maintains a �eet of vans to be
used by faculty and students for travel to conferences, �eld trips, etc. Requests to use a van occur at about 8
per week on average (i.e. 8/7 per day), and a van is used for an average of 2 days. If someone requests a van
and one is not available, then the request is denied and other transportation, not provided by the motor pool,
must be found.�e motor pool currently has 4 vans, but due to university restructuring, it has been asked to
reduce its �eet. In order to argue against the proposal, the director of the motor pool would like to predict
how many requests for the vans will be denied if the �eet is reduced from 4 to 3.

a. Model the 3-van system as a Markov process.
b. In the long run, what is the rate at which requests are denied?
c. In the long run, what is the average number of vans in use?
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6 �e Poisson process as a Markov process

● Let m =∞ so that the state space isM = {0, 1, 2, . . . }

● Suppose Sn = n (there have been n arrivals so far)

● Recall: interarrival times ∼ Exponential(λ)

● �e process only transitions into state n + 1 at a rate of λ

● �e generator matrix G looks like:

● What about steady state probabilities?

7 Food for thought

● Why is the minimum of m independent exponential random variables also an exponential random
variable?
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