Lesson 21. The Birth-Death Process - Performance Measures

- 1 Last time...
 - A birth-death process is a Markov process with state space $\mathcal{M} = \{0, 1, 2, ...\}$ with generator matrix

$$\mathbf{G} = \begin{pmatrix} -\lambda_0 & \lambda_0 & 0 & 0 & \cdots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & \cdots \\ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Steady-state probabilities $\pi_0, \pi_1, \pi_2, \ldots$:

$$\pi_j = \frac{d_j}{\sum_{i=0}^{\infty} d_i}$$
 for $j = 0, 1, 2, ...$

where

$$d_0 = 1$$
, $d_j = \prod_{i=1}^j \frac{\lambda_{i-1}}{\mu_i}$ for $j = 1, 2, ...$

• Interpretation:

 π_i = probability we find *j* customers in the system in the long run

= long-run fraction of time that there are j customers in the system

• Today: how to use the steady-state probabilities to compute long-run performance measures

2 System-level performance measures

• How do we measure the workload or congestion in the entire system?

• Expected number of customers in the system ℓ

- Expected number of customers in the queue ℓ_q

where *s* is the number of customers that can be served simultaneously

• Traffic intensity ρ

where λ is the arrival rate in all states, and μ is the service rate of *s* identical servers

- $\rho < 1 \Rightarrow$ (typically) the system is **stable**: the number of customers does not grow without bound
- $\rho \ge 1 \Rightarrow$ customers are arriving faster than they can be served
- When $\rho < 1$, the traffic intensity ρ is also known as the long-run **utilization** of each server: i.e., the fraction of time each server is busy
- Offered load o: the expected number of busy servers
- Relationship between ρ and ℓ_q : ℓ_q explodes as ρ approaches 1

• This example: Poisson arrivals with rate λ , one server with constant service rate μ : $\ell_q = \frac{\rho^2}{1-\rho}$

3 Customer-level performance measures

- Effective arrival rate to the system λ_{eff} : "average arrival rate"
- Little's law (system-wide)

where *w* is the **expected waiting time**: the expected time a customer spends in the system from arrival to departure

- Deep result, difficult to prove rigorously
- Intuitively, why does this hold?
 - \diamond System is stable \Rightarrow departure rate = arrival rate ("conservation of customers")
 - $\Rightarrow~\lambda_{\rm eff}$ should also be the "effective departure rate" from the queueing system
 - ♦ Departure rate for an individual customer \approx
 - \Rightarrow Departure rate for whole system \approx
 - ♦ Therefore,
- Little's law (queue only)

where w_q is the **expected delay**: the expected time a customer spends in the queue

• If the service rate is a constant μ , then waiting time and delay are related like so:

Example 1 (Nelson 8.4, modified, cont.). A small ice-cream shop competes with several other ice-cream shops in a busy mall. If there are too many customers already in line at the shop, then potential customers will go elsewhere. Potential customers arrive at a rate of 20 per hour. The probability that a customer will go elsewhere is j/5 when there are $j \le 5$ customers already in the system, and 1 when there are j > 5 customers already in the system. The server at the shop can serve customers at a rate of 10 per hour. Approximate the process of potential arrivals as Poisson, and the service times as exponentially distributed.

- a. Model the process of customer arrivals and departures at this ice-cream shop as a birth-death process (i.e. what are λ_i and μ_i for i = 0, 1, 2, ...?).
- b. Over the long run, how many customers are in the shop? (i.e. what is the probability there are 0 customers in the shop? 1? 2? etc.)
- c. On average, how many customers are waiting to be served (not including the customer in service)?
- d. Over the long run, what fraction of the time is the server busy?
- e. What is the effective arrival rate?
- f. What is the expected customer delay?
- g. What is the expected customer waiting time?
- h. Over the long run, at what rate are customers lost?
- i. Suppose that the shop makes a revenue of \$2 per customer served and pays the server \$4 per hour. What is the shop's long-run expected profit per hour (revenue minus cost)?