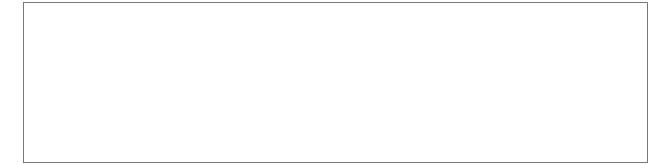
Lesson 25. Spatial Poisson Processes

- We have been looking at the arrivals of a Poisson process in a temporal manner
 - e.g. helicopters arriving at a maintenance facility throughout the day
- We can also look at the arrivals of a Poisson process in a spatial manner
 - o e.g. locations of emergency response units along a main thoroughfare
- Here, we limit ourselves to one-dimensional spaces (lines), but these ideas can be extended to higher dimensions (2D planes, 3D space)
- We'll talk about why modeling locations along a line as a Poisson process makes sense


Example 1. Police cars are distributed along Main Street in Simplexville according to a Poisson process with rate $\lambda = 1/2$ car per mile:

Suppose a crime occurs at the mile 3 marker of Main Street. What is the probability that the nearest police car is within 0.5 miles?

Example 2. In the police car example, what is the probability that there are at least 2 police cars between the mile 11 and mile 14 markers of Main Street? What is the expected number of police cars in that stretch of Main Street?

so, why does it make sense to model locations along a line as a Poisson process:	
Let's do an experiment using MATLAB	
First, let's distribute n points uniformly along the interval $[0, t]$:	
Next, let's compute the "gaps," or the distances between consecutive points along the in	terval:
Let's get a histogram of these gaps – what does it look like?	
Let's confirm our suspicions:	

Theorem. Given that n arrivals of a Poisson process have taken place in the interval [0, t], the times at which these arrivals occur can be seen as a n independent samples from Uniform[0, t].

- There are definitely situations in which locations are uniformly distributed throughout a region
- \Rightarrow We can use Poisson processes to model and analyze such situations
- This theorem generalizes to higher-dimensional notions of spatial Poisson processes

Example 3. Back to the police car example. Suppose there are 5 police cars between mile 2 and mile 12 of Main Street. What is the probability that 2 of these cars are between mile 6 and mile 12?		