Syllabus

Last updated: August 14, 2023

Course coordinator. Prof. Nelson Uhan 🖂 uhan@usna.edu

- **Course description.** This course provides an introduction to modeling and analyzing systems that evolve <u>dynamically</u> over time and whose behavior is <u>stochastic</u>, or uncertain. This course focuses on models for such systems that are amenable to mathematical analysis.
- **Course objectives.** By the end of this course, students will be able to (1) think probabilistically about real-world systems; (2) identify when a Markov chain, Poisson process, or birth-death queueing process is an appropriate model for a real-world system and construct such a model; and (3) analyze these models by computing and interpreting state probabilities and performance measures.

Textbook. B. Nelson. Stochastic Modeling: Analysis and Simulation. Dover, 2010.

The textbook is referred to as "SMAS" in the lesson notes. The textbook is not required, but you might find it helpful.

Schedule. Here is a tentative schedule.

Weeks	Торіс	
Introduction		
1	Course overview and logistics	
1	Sample paths	
Markov chains		
2	Conditional probability review	
3	Introduction to stochastic processes and Markov chains	
3	Modeling with Markov chains	
3-4	Markov chains – <i>n</i> -step probabilities	
4	Markov chains – long-run probabilities	
5	Modeling with Markov chains revisited	
6	Markov chains – computing	
6-7	Review for Exam 1	
7	Exam 1	
Poisson processes		
7-8	Review – Poisson, exponential, and Erlang random variables	
8-9	Introduction to Poisson processes	
9	Poisson processes - decomposition and superposition	
10	Nonstationary Poisson processes	
11	Poisson processes – computing	
11-12	Review for Exam 2	
12	Exam 2	

Weeks	Торіс	
Queueing processes		
12	A very brief introduction to Markov processes	
13-14	Introduction to queueing processes - the birth-death process	
14	The birth-death process – performance measures	
15	Standard queueing models	
16	Queueing processes – computing	
16	Review for Exam 3	
17	Exam 3	