Lesson 4. Sample Mean, Sample Variance, Confidence Intervals

1 Overview

- Last time: computed and observed performance measures for <u>1 simulation run</u> of the bank drive-in window
 - \circ e.g. the average time that the first *N* customers spend at the bank
 - For simplicity, let's call this the "average bank time"
- The observed average bank time can differ between simulation runs
- The average bank time is a random variable
 - Uncertain quantity before the simulation run
 - Depends on interarrival times and service times, which are random variables
- Can we estimate the distribution of the average bank time?
 - Let's focus on estimating the mean and variance of this distribution

2 The experiment

- Run the simulation *n* times
- Compute performance measure (e.g. average bank time) for each simulation run (obtaining *n* observations of the performance measure)
- Use the *n* observations to estimate the mean of the performance measure

3 After the experiment: observed sample mean and sample variance

- Let X_1, \ldots, X_n be independent and identically distributed (i.i.d.) random variables with unknown mean μ and variance σ^2
- Let x_1, \ldots, x_n be the observed values of X_1, \ldots, X_n , respectively
 - Think of X_i as the average bank time in the *i*th simulation run before the experiment
 - Think of x_i as the observed average bank time in the *i*th simulation run after the experiment
 - Since the simulation runs replicate the same system, X_1, \ldots, X_n should be identically distributed
- We want to estimate μ
- The observed sample mean is

- The observed sample variance is
- The standard error is
- We estimate μ using the the observed sample mean
- We estimate σ^2 using the observed sample variance
- These are **point estimates** for μ and σ^2 , respectively
- The standard error is a measure of the accuracy of the estimate of μ
- Why should we estimate μ and σ^2 this way?
- 4 Before the experiment: sample mean and sample variance
 - The sample mean is
 - The sample mean \overline{X} is a random variable: <u>before</u> the experiment, it is an uncertain quantity • $\mathbb{E}[\overline{X}] = \mu$, $\operatorname{Var}(\overline{X}) = \sigma^2/n$:

- The **sample variance** is
 - The sample variance is also a random variable: before the experiment, it is an uncertain quantity
- The sample mean is an unbiased estimator of μ, and the sample variance is an unbiased estimator of σ²: that is,
 - Intuitively, this indicates that using the observed sample mean to estimate μ and the observed sample variance to estimate σ^2 is not a bad idea

5 How good is the observed sample mean as an estimate?

- Is the observed sample mean \overline{x} "close" to μ ?
- Suppose \overline{X} is normally distributed
 - This is true if X_1, \ldots, X_n are normally distributed
 - This is approximately true by the Central Limit Theorem if $n \ge 30$
- Then the $(1 \alpha)100\%$ confidence interval for μ is

- This is an **interval estimate** for μ
- $t_{\alpha/2,n-1}$ can be computed by Excel with TINV($\alpha, n-1$)
- The *t*-distribution with n 1 degrees of freedom \approx standard Normal distribution when $n \ge 30$
- Interpretation of a confidence interval:
 - Sample mean \overline{X} and sample standard deviation S^2 are random variables
 - Every experiment, we get different observed sample mean \overline{x} and observed sample variance s^2
 - \Rightarrow Every experiment, we get a different confidence interval
 - After running the experiment many times, $(1 \alpha)100\%$ of the resulting confidence intervals will contain the actual mean μ
 - We say that "we are $(1 \alpha)100\%$ confident that the mean μ lies within the confidence interval"
 - <u>Wrong interpretation</u>: "The mean μ lies within the confidence interval with $(1 \alpha)100\%$ probability"
- Smaller confidence interval \Rightarrow more accurate estimate of μ

Example 1. Suppose an estimate of μ within 0.1 was desired at a confidence level of 95%. We perform a "warm-up" experiment of n = 30 simulation runs to compute an observed sample variance s^2 , which is found to be 3.2. How many simulations runs are needed to obtain this estimate of μ ?