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Lesson 4. Sample Mean, Sample Variance, Con�dence Intervals

1 Overview

● Last time: computed and observed performance measures for 1 simulation run of the bank drive-in
window

○ e.g. the average time that the �rst N customers spend at the bank
○ For simplicity, let’s call this the “average bank time”

● �e observed average bank time can di�er between simulation runs

● �e average bank time is a random variable

○ Uncertain quantity before the simulation run
○ Depends on interarrival times and service times, which are random variables

● Can we estimate the distribution of the average bank time?

○ Let’s focus on estimating the mean and variance of this distribution

2 �e experiment

● Run the simulation n times

● Compute performance measure (e.g. average bank time) for each simulation run
(obtaining n observations of the performance measure)

● Use the n observations to estimate the mean of the performance measure

3 A�er the experiment: observed sample mean and sample variance

● Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random variables with unknown
mean µ and variance σ2

● Let x1, . . . , xn be the observed values of X1, . . . , Xn, respectively

○ �ink of Xi as the average bank time in the ith simulation run before the experiment
○ �ink of xi as the observed average bank time in the ith simulation run after the experiment
○ Since the simulation runs replicate the same system, X1, . . . , Xn should be identically distributed

● We want to estimate µ

● �e observed sample mean is
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● �e observed sample variance is

● �e standard error is

● We estimate µ using the the observed sample mean

● We estimate σ2 using the observed sample variance

● �ese are point estimates for µ and σ2, respectively

● �e standard error is a measure of the accuracy of the estimate of µ

● Why should we estimate µ and σ2 this way?

4 Before the experiment: sample mean and sample variance

● �e sample mean is

○ �e sample mean X is a random variable: before the experiment, it is an uncertain quantity
○ E[X] = µ, Var(X) = σ2/n:

● �e sample variance is

○ �e sample variance is also a random variable: before the experiment, it is an uncertain quantity

● �e sample mean is an unbiased estimator of µ, and the sample variance is an unbiased estimator of
σ2: that is,

○ Intuitively, this indicates that using the observed sample mean to estimate µ and the observed
sample variance to estimate σ2 is not a bad idea
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5 How good is the observed sample mean as an estimate?

● Is the observed sample mean x “close” to µ?

● Suppose X is normally distributed

○ �is is true if X1, . . . , Xn are normally distributed
○ �is is approximately true by the Central Limit �eorem if n ≥ 30

● �en the (1 − α)100% con�dence interval for µ is

○ �is is an interval estimate for µ
○ tα/2,n−1 can be computed by Excel with TINV(α,n − 1)
○ �e t-distribution with n − 1 degrees of freedom ≈ standard Normal distribution when n ≥ 30

● Interpretation of a con�dence interval:

○ Sample mean X and sample standard deviation S2 are random variables
○ Every experiment, we get di�erent observed sample mean x and observed sample variance s2

⇒ Every experiment, we get a di�erent con�dence interval
○ A�er running the experiment many times, (1 − α)100% of the resulting con�dence intervals will
contain the actual mean µ

○ We say that “we are (1 − α)100% con�dent that the mean µ lies within the con�dence interval”
○ Wrong interpretation: “�e mean µ lies within the con�dence interval with (1 − α)100% probabil-
ity”

● Smaller con�dence interval⇒more accurate estimate of µ

Example 1. Suppose an estimate of µ within 0.1 was desired at a con�dence level of 95%. We perform a
“warm-up” experiment of n = 30 simulation runs to compute an observed sample variance s2, which is found
to be 3.2. How many simulations runs are needed to obtain this estimate of µ?
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