Lesson 7. Random Number Generation

1 Overview

- How does a computer program sample independent values from the Uniform[0,1] distribution, e.g. the RAND function in Excel?
- It is very difficult to get a computer to do something completely randomly
 - o A computer, by design, follows its instructions blindly, and is therefore completely predictable
 - A computer that doesn't do this is broken!
- One approach: pseudo-random number generators

2 Pseudo-random number generators (PRNGs)

- "Psuedo" means having a deceptive resemblance
- PRNGs are (deterministic) <u>algorithms</u> that use mathematical formulas or precalculated tables to produce sequences of numbers that appear random
- Some desirable properties of a PRNG:
 - 1. Efficient: can produce many numbers in a short time
 - 2. Deterministic: a given sequence of numbers can be reproduced at a later date if the starting point in the sequence is known
 - Useful for comparing different systems
 - 3. Long cycle: if the PRNG is periodic (generates a sequence that eventually repeats itself), the cycle length should be sufficiently long
 - Modern PRNGs have a period so long that it can be ignored for most practical purposes
 - 4. (most important) Pass statistical tests for uniformity and independence
 - These numbers should <u>not</u> be statistically differentiable from a sequence of truly independently sampled values from the Uniform[0,1] distribution
- Some consequences of uniformity and independence:
 - If the interval [0,1] is divided into n subintervals of equal length, and N values are sampled, then the expected number of values in each interval is N/n
 - The probability of observing a value in a particular interval is independent of the previous values observed

3 The linear congruential method

Produces sequence of integers X_1, X_2, \ldots using the following recursion:	
\circ The initial value X_0 is called the	
• The minimum possible value of $X_1, X_2,$ is	
• The maximum possible value of X_1, X_2, \ldots is	
The stream , or the sequence of generated pseudo-ra	andom numbers is

- The modulus is often chosen to be a power of 2: binary computations are fast on a computer
- If c = 0, this is a multiplicative congruential method
- If $c \neq 0$, this is a **mixed congruential method**

Example 1. In Excel, generate 30 pseudo-random numbers using the linear congruential method with a modulus of $2^4 = 16$, a multiplier of 5, an increment of 3, and a seed of 1.

Note: In Excel, MOD(X,m) computes $X \mod m$.

Example 2. In Excel, generate 30 pseudo-random numbers using the linear congruential method with a modulus of $2^{31} - 1$, a multiplier of 7^5 , an increment of 0, and a seed of 123,457.

This generator was used in the IMSL Scientific Subroutine Package in 1978.