Lesson 8. Chi-Square Test for Uniformity

1 Last time...

- A **pseudo-random number generator (PRNG)** is a (deterministic) algorithm that uses mathematical formulas or precalculated tables to produce sequences of numbers that appear to be independently sampled from a Uniform[0, 1] distribution
- A good PRNG must pass statistical tests for **uniformity** and **independence**
	- These numbers should not be statistically differentiable from a sequence of truly independently sampled values from the Uniform[0, 1] distribution
- Today: how can we test for uniformity?

2 Motivation: testing Excel's RAND **function**

- We don't know what PRNG Excel's RAND function uses
- How uniform are the pseudo-random numbers generated by Excel's RAND function?
- In the spreadsheet for today's lesson, we have 150 pseudo-random numbers generated by RAND
- Idea: if the interval [0,1] is divided into m subintervals of equal length, and n values are sampled, then the expected number of values in each interval is n/m
	- \Rightarrow If we divide [0,1] into 10 subintervals [0, 0.1], [0.1, 0.2], etc. we should expect to see about 15 numbers in each subinterval
- Set up "bins" for each interval
- Use the FREQUENCY function to figure out how many numbers fall into each bin
	- FREQUENCY(data array, bins array)
		- \Diamond data_array = array/reference to a set of values for which you want to count frequencies
		- \Diamond bins array = array/reference to intervals into which you want to group the values in data array
	- Highlight the "# observations" column, enter the formula, then press CTRL-SHIFT-ENTER
		- ◇ FREQUENCY is an array function
- Can plot a histogram by highlighting the "# observations" column, and then selecting Insert → Column → Clustered Column
- Are there roughly 15 numbers in each bin?
- Is this "close enough" to what we expect?
- Let's be more rigorous about this...

3 Chi-squared test for uniformity

- Let Y_1, \ldots, Y_n be *n* independent random variables in [0,1]
- Let y_1, \ldots, y_n be observations of Y_1, \ldots, Y_n

• Divide [0, 1] into *m* subintervals of equal length: $\left[0, \frac{1}{100}\right]$ $\frac{1}{m}$, $\left[\frac{1}{m}\right]$ $\frac{1}{m}, \frac{2}{n}$ $\left[\frac{2}{m}\right], \ldots, \left[\frac{m-1}{m}\right]$ $\left\lceil \frac{n-1}{m},1\right\rceil$

- The hypothesis we are testing: if Y represents any of the Y_i 's,
	- \circ We call this the **null hypothesis** H_0 (for this test)
- Let O_i be the number of Y_i 's in $\left[\frac{i-1}{n}\right]$ $\frac{-1}{m}, \frac{i}{n}$ $\frac{i}{m}$ for $i = 1, \ldots, m$
	- \circ O_i is a random variable: uncertain quantity before Y_i 's are observed
	- \circ Let $e_i = \mathbb{E}[O_i]$ = expected number of observations in $\left[\frac{i-1}{i}\right]$ $\frac{-1}{m}, \frac{i}{n}$ $\frac{1}{m}$ =
- Let o_1, \ldots, o_m be the observations of O_1, \ldots, O_m
- The **test quantity** T is
	- \circ T is a random variable that has approximately a chi-squared distribution with $m 1$ degrees of freedom when H_0 is true
	- \circ Rule of thumb: $e_i \geq 5$ for $i = 1, \ldots, m$
- The observed test quantity t is
- Small values of $t \Rightarrow$ evidence in favor of H_0
- Large values of $t \Rightarrow$ evidence against H_0
- How large does t have to be to reject H_0 ?
- The *p*-value is
	- \circ Interpretation: probability that such a large value of T would have been observed if H_0 is true
	- \circ Small *p*-values (< *α*, where *α* is typically 0.05 or even 0.01) ⇒ reject H₀
- Computing this in Excel:
	- CHIDIST(t, m-1) = $\mathbb{P}(\chi^2_{m-1} \geq t)$