Lesson 8. Chi-Square Test for Uniformity

1 Last time...

- A **pseudo-random number generator (PRNG)** is a (deterministic) algorithm that uses mathematical formulas or precalculated tables to produce sequences of numbers that <u>appear</u> to be independently sampled from a Uniform[0,1] distribution
- A good PRNG must pass statistical tests for uniformity and independence
 - These numbers should not be statistically differentiable from a sequence of truly independently sampled values from the Uniform[0,1] distribution
- Today: how can we test for uniformity?

2 Motivation: testing Excel's RAND function

- We don't know what PRNG Excel's RAND function uses
- How uniform are the pseudo-random numbers generated by Excel's RAND function?
- In the spreadsheet for today's lesson, we have 150 pseudo-random numbers generated by RAND
- Idea: if the interval [0, 1] is divided into *m* subintervals of equal length, and *n* values are sampled, then the expected number of values in each interval is *n*/*m*
 - ⇒ If we divide [0,1] into 10 subintervals [0,0.1], [0.1,0.2], etc. we should expect to see about 15 numbers in each subinterval
- Set up "bins" for each interval
- Use the FREQUENCY function to figure out how many numbers fall into each bin
 - FREQUENCY(data_array, bins_array)
 - ♦ data_array = array/reference to a set of values for which you want to count frequencies
 - ◊ bins_array = array/reference to intervals into which you want to group the values in data_array
 - Highlight the "# observations" column, enter the formula, then press **CTRL-SHIFT-ENTER**
 - ♦ FREQUENCY is an array function
- Can plot a histogram by highlighting the "# observations" column, and then selecting Insert → Column → Clustered Column
- Are there roughly 15 numbers in each bin?
- Is this "close enough" to what we expect?
- Let's be more rigorous about this...

3 Chi-squared test for uniformity

- Let Y_1, \ldots, Y_n be *n* independent random variables in [0, 1]
- Let y_1, \ldots, y_n be observations of Y_1, \ldots, Y_n

• Divide [0,1] into *m* subintervals of equal length: $\left[0,\frac{1}{m}\right], \left[\frac{1}{m},\frac{2}{m}\right], \dots, \left[\frac{m-1}{m},1\right]$

- The hypothesis we are testing: if Y represents any of the Y_j 's,
 - We call this the **null hypothesis** H_0 (for this test)
- Let O_i be the number of Y_j 's in $\left[\frac{i-1}{m}, \frac{i}{m}\right]$ for i = 1, ..., m
 - O_i is a random variable: uncertain quantity before Y_i 's are observed
 - Let $e_i = \mathbb{E}[O_i]$ = expected number of observations in $\left[\frac{i-1}{m}, \frac{i}{m}\right]$ =
- Let o_1, \ldots, o_m be the observations of O_1, \ldots, O_m
- The **test quantity** *T* is
 - *T* is a random variable that has approximately a chi-squared distribution with m 1 degrees of freedom when H_0 is true
 - Rule of thumb: $e_i \ge 5$ for i = 1, ..., m
- The **observed test quantity** *t* is
- Small values of $t \Rightarrow$ evidence in favor of H_0
- Large values of $t \Rightarrow$ evidence against H_0
- How large does *t* have to be to reject *H*₀?
- The *p*-value is
 - Interpretation: probability that such a large value of T would have been observed if H_0 is true
 - ∘ Small *p*-values (< α , where α is typically 0.05 or even 0.01) ⇒ reject H_0
- Computing this in Excel:
 - CHIDIST(t, m-1) = $\mathbb{P}(\chi^2_{m-1} \ge t)$