Lesson 9. Kolmogorov-Smirnov Test for Uniformity, Testing for Independence

1 Overview

- Today: another test for uniformity: the **Kolmogorov-Smirnov (K-S) Test**
- Advantages over the Chi-squared test:
	- o No intervals need to be specified
	- \circ Designed for continuous data, like values sampled from a Uniform [0, 1] random variable
- Disadvantages: more involved

2 The Kolmogorov-Smirnov Test

- Let Y_1, \ldots, Y_n be *n* independent random variables in [0, 1]
- Let y_1, \ldots, y_n be the observations of Y_1, \ldots, Y_n
- Let F be the cumulative distribution function (cdf) of a Uniform [0,1] random variable U, e.g.
- The null hypothesis H_0 for the K-S test:
- Let F_e be the **empirical cdf** of Y_1, \ldots, Y_n :
- The (adjusted) test statistic *D* is
	- *D* is small \Rightarrow evidence in favor of H_0
	- \circ *D* is large \Rightarrow evidence against H_0
- After observing Y_1, \ldots, Y_n , we can compute the **observed (adjusted) test statistic** d using y_1, \ldots, y_n
- The *p*-value is $P(D \ge d)$
	- $\circ~$ D does not have a closed form!
	- \circ Critical values: $\mathbb{P}(D \geq d_{\alpha}) = \alpha$

α	0.150	0.100	0.050	0.025	0.010
d_{α}	1.138	1.224	1.358	1.480	1.628

 \circ For a given α, if $d > d_α$, then reject H_0

3 Computing the test statistic D

- Let $y_{(j)}$ be the *j*th smallest of y_1, \ldots, y_n , for $j = 1, \ldots, n$
- Using the properties of the empirical cdf, one can show that
- Intuitively:
	- \circ Remember: for Uniform [0, 1], the cdf is $F(x) = x$ for $0 \le x \le 1$
	- \circ If y_1, \ldots, y_n are observations from the Uniform[0,1] distribution, then we expect $y_{(j)}$ to be in the interval $\left[\frac{j-1}{n}\right]$ $\frac{1}{n}$, j $\frac{1}{n}$
	- *D* measures how far $y_{(j)}$ falls from $\left[\frac{j-1}{n}\right]$ $\frac{1}{n}$, j $\frac{1}{n}$
- In the Excel workbook for today's lesson, the "K-S" sheet contains 20 psuedo-random numbers
- Let's conduct the K-S test for uniformity on these numbers
- Copy and paste the numbers, use Data \rightarrow Sort to get the numbers in ascending order (i.e., the $y_{(j)}$'s)
- Compute the differences, use the MAX function to get D

4 Testing for independence

- Many tests have been devised to determine whether a set of psuedo-random numbers are independent
- Here's a simple test that will serve our purposes for now
- The **sample correlation** between (x_1, \ldots, x_n) and (y_1, \ldots, y_n) is

$$
\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}
$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

- Can be computed using the CORREL function in Excel
- Simple test:
	- \circ Compute correlation between (x_1, \ldots, x_n) and (x_2, \ldots, x_{n+1}) (consecutive observations)
	- \circ Compute correlation between (x_1, \ldots, x_n) and (x_3, \ldots, x_{n+2}) (every other observation)
	- If these correlations are "small" (rule of thumb: absolute value less than 0.3), then do not reject the hypothesis that the observations are independent
- In the "indep" sheet, there are 22 pseudo-random numbers
- Let's conduct this test for independence on these numbers