Spring 2013

Lesson 9. Kolmogorov-Smirnov Test for Uniformity, Testing for Independence

1 Overview

- Today: another test for uniformity: the Kolmogorov-Smirnov (K-S) Test
- Advantages over the Chi-squared test:
 - No intervals need to be specified
 - Designed for continuous data, like values sampled from a Uniform[0,1] random variable
- Disadvantages: more involved

2 The Kolmogorov-Smirnov Test

- Let Y_1, \ldots, Y_n be *n* independent random variables in [0, 1]
- Let y_1, \ldots, y_n be the observations of Y_1, \ldots, Y_n
- Let *F* be the cumulative distribution function (cdf) of a Uniform[0,1] random variable *U*, e.g.
- The null hypothesis H_0 for the K-S test:
- Let F_e be the **empirical cdf** of Y_1, \ldots, Y_n :
- The (adjusted) test statistic *D* is
 - *D* is small \Rightarrow evidence in favor of H_0
 - D is large \Rightarrow evidence against H_0
- After observing Y_1, \ldots, Y_n , we can compute the **observed** (adjusted) test statistic d using y_1, \ldots, y_n
- The *p*-value is $\mathbb{P}(D \ge d)$
 - $\circ~D$ does not have a closed form!
 - Critical values: $\mathbb{P}(D \ge d_{\alpha}) = \alpha$

• For a given α , if $d > d_{\alpha}$, then reject H_0

3 Computing the test statistic D

- Let $y_{(j)}$ be the *j*th smallest of y_1, \ldots, y_n , for $j = 1, \ldots, n$
- Using the properties of the empirical cdf, one can show that
- Intuitively:
 - Remember: for Uniform [0,1], the cdf is F(x) = x for $0 \le x \le 1$
 - If y_1, \ldots, y_n are observations from the Uniform[0,1] distribution, then we expect $y_{(j)}$ to be in the interval $\left[\frac{j-1}{n}, \frac{j}{n}\right]$
 - *D* measures how far $y_{(j)}$ falls from $\left[\frac{j-1}{n}, \frac{j}{n}\right]$
- In the Excel workbook for today's lesson, the "K-S" sheet contains 20 psuedo-random numbers
- Let's conduct the K-S test for uniformity on these numbers
- Copy and paste the numbers, use Data \rightarrow Sort to get the numbers in ascending order (i.e., the $y_{(j)}$'s)
- Compute the differences, use the MAX function to get D

4 Testing for independence

- Many tests have been devised to determine whether a set of psuedo-random numbers are independent
- Here's a simple test that will serve our purposes for now
- The sample correlation between (x_1, \ldots, x_n) and (y_1, \ldots, y_n) is

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

- Can be computed using the CORREL function in Excel
- Simple test:
 - Compute correlation between (x_1, \ldots, x_n) and (x_2, \ldots, x_{n+1}) (consecutive observations)
 - Compute correlation between (x_1, \ldots, x_n) and (x_3, \ldots, x_{n+2}) (every other observation)
 - If these correlations are "small" (rule of thumb: absolute value less than 0.3), then <u>do not</u> reject the hypothesis that the observations are independent
- In the "indep" sheet, there are 22 pseudo-random numbers
- Let's conduct this test for independence on these numbers