
SA421 – Simulation Modeling Asst. Prof. Nelson Uhan

Lesson 14. Using Random Numbers to Estimate Area

- We can use random numbers and random variates to estimate areas and irrational numbers
- Recall that $\ln 2 = \int_{1}^{2} \frac{1}{x} dx$
- We can estimate ln 2 by estimating the area under the graph of y = 1/x between 1 and 2

- Idea:
 - Throw *n* uniformly random points in the square $[1, 2] \times [0, 1]$
 - Suppose *m* of those points fall under the graph of y = 1/x
 - \circ Then

- Recall that we can generate V ~ Uniform[a, b] with the generator V = a + (b − a)U, where U ~ Uniform[0,1]
- How do we generate uniformly random points in the square $[1, 2] \times [0, 1]$?
 - Let U_1, U_2 be independent Uniform [0, 1] random variables
 - Let $X \sim \text{Uniform}[1, 2]$, which can be generated by
 - Let $Y \sim \text{Uniform}[0,1]$, which can be generated by
 - (X, Y) is a uniformly random point in the square
 - The point (X, Y) is under the graph of y = 1/x if Y < 1/X
- Let's use Excel to generate 30 uniformly random points in the square $[1, 2] \times [0, 1]$ and estimate ln 2.

Problem 1. In this problem, we will use simulation to estimate π .

- a. What is the area of a circle with radius 1?
- b. Give an equation of the circle centered at the origin of the *xy*-plane with radius 1. Change your equation to an inequality that represents the interior of this circle.
- c. Use Excel to generate 1000 uniformly random points in the square $[-1, 1] \times [-1, 1]$.
- d. Use Excel to count how many of these points fall inside the circle centered at the origin with radius 1. Use this to give an estimate of π .