Lesson 6. Replicating Simulations: Sample Mean and Variance, Confidence Intervals

1 Overview

- So far, we've computed and observed performance measures for 1 simulation run
 - o e.g. average delay in the Fantastic Dan problem
- The observed average delay can differ between simulation runs
- Average delay is a random variable
 - Uncertain quantity before the simulation is run
 - o Depends on interarrival times and service times, which are random variables
- Can we estimate the distribution of average delay?
 - Let's focus on estimating the mean and variance of this distribution

2 The experiment

- Replicate the simulation *n* times
- Compute performance measure (e.g. average delay) for each simulation run (obtaining *n* observations of the performance measure)
- Use the *n* observations to estimate the mean and variance of the performance measure

3 After the experiment: observed sample mean and sample variance

- Let $X_1, ..., X_n$ be independent and identically distributed (i.i.d.) random variables with unknown mean μ and variance σ^2
- Let x_1, \ldots, x_n be the observed values of X_1, \ldots, X_n , respectively
- For example:
 - \circ Think of X_i as the average delay in the *i*th simulation run before the experiment
 - Think of x_i as the observed average delay in the *i*th simulation run after the experiment
 - \circ Since the simulation runs replicate the same system, X_1, \ldots, X_n should be identically distributed
- We want to estimate μ

• The observed sample mean	is					
• The observed sample varian	ce is					
• The observed sample standa	ard deviation is					
$ullet$ We estimate μ using the the observed sample mean						
• We estimate σ^2 using the observed sample variance						
$ullet$ We estimate σ using the observed sample standard deviation						
• These are point estimates for μ , σ^2 and σ , respectively						
• Why should we estimate μ and σ^2 this way?						
Before the experiment: sample mean and sample variance						
• The sample mean is						
• The sample mean \overline{X} is a random variable: <u>before</u> the experiment, it is an uncertain quantity • $\mathbb{E}[\overline{X}] = \mu$, $Var(\overline{X}) = \sigma^2/n$:						
• The sample variance is						
• The sample standard deviat	ion is					
o The sample variance and sample standard deviation are also random variables: before the experi-						

ment, they are uncertain quantities

• The sample mean is an unbiased estimator of μ , and the sample variance is an unbiased estimator of σ^2 : that is,
\circ Intuitively, this indicates that using the observed sample mean to estimate μ and the observed sample variance to estimate σ^2 is not a bad idea
Confidence intervals: how good is the observed sample mean as an estimate?
• Is the observed sample mean \overline{x} "close" to μ ?
• Suppose \overline{X} is normally distributed
• This is true if X_1, \ldots, X_n are normally distributed
∘ This is approximately true by the Central Limit Theorem if $n \ge 30$
• Then the $(1 - \alpha)100\%$ confidence interval for μ is
• This is an interval estimate for μ
• Note: more observations (larger n) \Rightarrow smaller confidence intervals
∘ The <i>t</i> -distribution with $n-1$ degrees of freedom ≈ standard Normal distribution when $n \ge 30$
Interpreting confidence intervals

6

5

- Sample mean \overline{X} and sample standard deviation S^2 are random variables
- Every experiment, we get different observed sample mean \overline{x} and observed sample variance s^2
- ⇒ Every experiment, we get a different confidence interval
- After running the experiment many times, $(1-\alpha)100\%$ of the resulting confidence intervals will contain the actual mean μ
- We say that "we are $(1 \alpha)100$ % confident that the mean μ lies within the confidence interval"
- Wrong interpretation: "The mean μ lies within the confidence interval with $(1 \alpha)100\%$ probability"
- Smaller confidence interval \Rightarrow more accurate estimate of μ

warm-up" experiments be 3.2. How many	ent of $n = 30$ simular	ation runs to con	npute an observe	ed sample variance	