Lesson 6. Replicating Simulations: Sample Mean and Variance, Confidence Intervals #### 1 Overview - So far, we've computed and observed performance measures for 1 simulation run - o e.g. average delay in the Fantastic Dan problem - The observed average delay can differ between simulation runs - Average delay is a random variable - Uncertain quantity before the simulation is run - o Depends on interarrival times and service times, which are random variables - Can we estimate the distribution of average delay? - Let's focus on estimating the mean and variance of this distribution ### 2 The experiment - Replicate the simulation *n* times - Compute performance measure (e.g. average delay) for each simulation run (obtaining *n* observations of the performance measure) - Use the *n* observations to estimate the mean and variance of the performance measure ### 3 After the experiment: observed sample mean and sample variance - Let $X_1, ..., X_n$ be independent and identically distributed (i.i.d.) random variables with unknown mean μ and variance σ^2 - Let x_1, \ldots, x_n be the observed values of X_1, \ldots, X_n , respectively - For example: - \circ Think of X_i as the average delay in the *i*th simulation run before the experiment - Think of x_i as the observed average delay in the *i*th simulation run after the experiment - \circ Since the simulation runs replicate the same system, X_1, \ldots, X_n should be identically distributed - We want to estimate μ | • The observed sample mean | is | | | | | | |--|------------------|--|--|--|--|--| | • The observed sample varian | ce is | | | | | | | • The observed sample standa | ard deviation is | | | | | | | $ullet$ We estimate μ using the the observed sample mean | | | | | | | | • We estimate σ^2 using the observed sample variance | | | | | | | | $ullet$ We estimate σ using the observed sample standard deviation | | | | | | | | • These are point estimates for μ , σ^2 and σ , respectively | | | | | | | | • Why should we estimate μ and σ^2 this way? | | | | | | | | Before the experiment: sample mean and sample variance | | | | | | | | • The sample mean is | | | | | | | | • The sample mean \overline{X} is a random variable: <u>before</u> the experiment, it is an uncertain quantity • $\mathbb{E}[\overline{X}] = \mu$, $Var(\overline{X}) = \sigma^2/n$: | • The sample variance is | | | | | | | | • The sample standard deviat | ion is | | | | | | | o The sample variance and sample standard deviation are also random variables: before the experi- | | | | | | | ment, they are uncertain quantities | • The sample mean is an unbiased estimator of μ , and the sample variance is an unbiased estimator of σ^2 : that is, | |---| | | | \circ Intuitively, this indicates that using the observed sample mean to estimate μ and the observed sample variance to estimate σ^2 is not a bad idea | | Confidence intervals: how good is the observed sample mean as an estimate? | | • Is the observed sample mean \overline{x} "close" to μ ? | | • Suppose \overline{X} is normally distributed | | • This is true if X_1, \ldots, X_n are normally distributed | | ∘ This is approximately true by the Central Limit Theorem if $n \ge 30$ | | • Then the $(1 - \alpha)100\%$ confidence interval for μ is | | | | | | | | | | | | | | • This is an interval estimate for μ | | • Note: more observations (larger n) \Rightarrow smaller confidence intervals | | ∘ The <i>t</i> -distribution with $n-1$ degrees of freedom ≈ standard Normal distribution when $n \ge 30$ | | Interpreting confidence intervals | ## 6 5 - Sample mean \overline{X} and sample standard deviation S^2 are random variables - Every experiment, we get different observed sample mean \overline{x} and observed sample variance s^2 - ⇒ Every experiment, we get a different confidence interval - After running the experiment many times, $(1-\alpha)100\%$ of the resulting confidence intervals will contain the actual mean μ - We say that "we are $(1 \alpha)100$ % confident that the mean μ lies within the confidence interval" - Wrong interpretation: "The mean μ lies within the confidence interval with $(1 \alpha)100\%$ probability" - Smaller confidence interval \Rightarrow more accurate estimate of μ | warm-up" experiments be 3.2. How many | ent of $n = 30$ simular | ation runs to con | npute an observe | ed sample variance | | |---------------------------------------|-------------------------|-------------------|------------------|--------------------|--| |