2

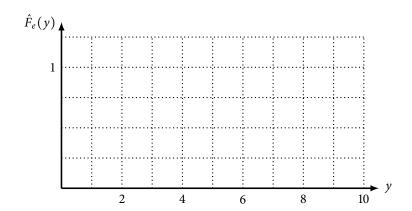
Lesson 9. Input Data Analysis - Continuous Distributions

1 Continuous random variables and distributions: review

- A random variable is **continuous** if it can take on a continuum of values
- Let *X* be a continuous random variable
- The **cumulative distribution function (cdf)** F_X of X is

$F_X(a) = \Pr\{X \leq a\}$
• The probability density function (pdf) p_X of X is
Another way the pdf and cdf of a continuous random variable are related:
The empirical cdf
• Let Y_0, \ldots, Y_{n-1} be n independent and identically distributed (iid) random variables with cdf F_Y
• Let y_0, \ldots, y_{n-1} be observations of Y_0, \ldots, Y_{n-1}
• In words, $F_Y(a) = \Pr\{Y \leq a\} \approx$
• The empirical cdf is
• Note that $F_e(a)$ is a random variable for any fixed value of a
• The observed empirical cdf is

Example 1. Let n = 4. Suppose the observations of Y_0 , Y_1 , Y_2 , Y_3 are $y_0 = 3$, $y_1 = 1$, $y_2 = 8$, $y_3 = 4$. Plot the observed empirical cdf \hat{F}_e .



• Let $y_{(0)}, y_{(1)}, \dots, y_{(n-1)}$ be the observations y_0, \dots, y_{n-1} sorted from smallest to largest

$$\Rightarrow \hat{F}_e(y_{(i)}) =$$
 for $i = 0, 1, ..., n - 1$.

3 Kolmogorov-Smirnov goodness-of-fit test

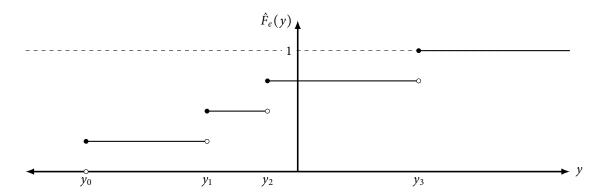
- Let Y_0, \ldots, Y_{n-1} be n iid continuous random variables
- Let y_0, \ldots, y_{n-1} be observations of Y_0, \ldots, Y_{n-1}
- Let X be the proposed continuous random variable with cdf F_X
- The **Kolmogorov-Smirnov** (K-S) goodness-of-fit test compares the empirical cdf of the Y_j 's with the cdf of the proposed random variable X
- Question: Do the Y_j 's share the same distribution as X?
- Null hypothesis H_0 : for any Y_j ,

• The test statistic is

_			

• The **observed test statistic** is

- The *p*-value is $Pr\{D \ge d\}$
 - o $\sqrt{n}D$ follows a **Kolmogorov distribution**
 - Important caveat: $\sqrt{n}D$ does <u>not</u> follow a Kolmogorov distribution if the proposed distribution of X depends on estimates based on the observations y_0, \ldots, y_{n-1}
 - e.g. if you propose X as an exponential random variable, but guess the mean based on y_0, \ldots, y_{n-1}
 - o There are ways around this, some quick-and-dirty, some more rigorous
- How do we compute *d*? Do we really need to consider all values of *x*?



• So, we can compute the observed test statistic as