Lesson 10. Random Number Generation

1 Overview

- A **random number** is a random observation from a Uniform[0,1] distribution
- How do we tell a computer to generate random numbers: i.e., sample independent values from the Uniform[0,1] distribution?
 - e.g. the uniform function in numpy.random
- It is very difficult to get a computer to do something randomly
 - A computer, by design, follows its instructions blindly, and is therefore completely predictable
 - A computer that doesn't do this is broken!
- One approach: pseudo-random number generators

2 Pseudo-random number generators (PRNGs)

- "Psuedo" means having a deceptive resemblance
- PRNGs are (deterministic) <u>algorithms</u> that use mathematical formulas or precalculated tables to produce sequences of numbers that appear random

2.1 Desirable properties of a PRNG

Efficient. Can produce many numbers in a short amount of time

Deterministic. A given sequence of numbers can be reproduced at a later date if the starting point in the sequence is known

• Useful for comparing different systems

Long cycle. If the PRNG is periodic (generates a sequence that eventually repeats itself), the cycle length should be sufficiently long

• Modern PRNGs have a period so long that it can be ignored for most practical purposes

Pass statistical tests for uniformity and independence. Most importantly: these numbers should <u>not</u> be statistically differentiable from a sequence of truly independently sampled values from the Uniform [0,1] distribution

- We can test for uniformity using goodness-of-fit tests (e.g. Kolmogorov-Smirnov)
- We will discuss testing for independence at a later point

•	Produces sequence of integers X_1, X_2, \ldots using the following recursion:
	\circ The initial value X_0 is called the
	• The minimum possible value of X_1, X_2, \ldots is
	• The maximum possible value of X_1, X_2, \dots is
•	The stream , or the sequence of generated pseudo-random numbers is
•	The modulus is often chosen to be a power of 2: binary computations are fast on a computer
•	If $c = 0$, this is a multiplicative congruential generator
•	If $c \neq 0$, this is a mixed congruential generator
3.1	Period length
•	The period of a linear congruential generator (LCG) is the smallest integer n such that $X_0 = X_{n-1}$ (how many iterations of the LCG take place before the sequence starts to repeat itself)
•	An LCG has full period if its period is <i>m</i> (Why?)
•	Theorem. An LCG has full period if and only if:
	 (i) c and m are relatively prime: the only positive integer that divides both c and m is 1 (ii) If m is a multiple of 4, then a – 1 is a multiple of 4 (iii) If p is a prime number dividing m, then a – 1 is a multiple of p
Exan	aple 1. Consider the LCG with modulus 16, increment 11, and multiplier 9. Confirm that this LCG has eriod.