Lesson 1. Introduction to Simulation

1 What is simulation?

- **Simulation** is the imitation of a real-world system in order to obtain data that can be used to evaluate and improve the system's performance
- In this course, we will focus on simulations that are
 - stochastic: some aspects of the system are modeled using random variables
 - **discrete-event**: state of the system changes at discrete points in time triggered by **events**, e.g. the arrival of a customer, the completion of an activity

2 Why simulate?

- Real-world trial-and-error approaches are expensive, time consuming and disruptive
- Complex systems are often resistant to analytical models and solutions (e.g. limitations of mathematical programming, queueing theory)

3 The Fantastic Dan Problem

Customers visit the neighborhood hair stylist Fantastic Dan for haircuts. The customer interarrival time is exponentially distributed with a mean of 20 minutes. Each haircut takes Fantastic Dan anywhere from 15 to 25 minutes, uniformly distributed.

- Questions we might be interested in:
 - On average, how long does a customer spend at the hair stylist?
 - On average, how many customers are waiting for a haircut?
- We can answer these questions by simulating the arrival and service of customers
- To perform this simulation, we need:
 - time of arrival of each customer
 - how long it takes to serve each customer
- Obtaining these requires **sampling** from the above probability distributions
- We will discuss the mathematics behind sampling later in the course
- For now, let's assume we have a sampling oracle for these distributions

3.1 Simulating the first 5 customers

- Fantastic Dan opens his shop at time 0
- The interarrival times of the first 5 customers are 23, 5, 10, 79, 13
- The service times of the first 5 customers are 17, 21, 19, 22, 19

Custom on (a)	Interarrival	Arrival time	Start service	Service time	Departure	Total time				
Customer (a)	time (b)	(c)	time (<i>d</i>)	(<i>e</i>)	time (f)	in shop (g)				

• Arrival time *c* = time when customer arrives at shop

• Start service time *d* = time when customer starts service

- Departure time *f* = time when customer leaves =
- Total time at shop *g* =
- Does arrival time *c* always equal start service time *d*?
- What assumptions are we making with these calculations?

4 Performance measures

- We simulate a system in order to understand how the system performs
- Some common **performance measures**, especially for systems with queues:
 - average waiting time and average delay
 - server utilization
 - time average number of customers

4.1 Average waiting time and average delay

- The average waiting time *w* is the average time a customer spends in the system from arrival to departure
- Offers a view of performance from the customer's perspective
- For the Fantastic Dan simulation above, the average waiting time is
- We can similarly compute the **average delay** w_q , the average time a customer spends in the queue

4.2 Server utilization

- The server utilization ρ is the proportion of time that the server is busy serving a customer:
- Offers a view of performance from the system's perspective
- For the Fantastic Dan simulation above, the server utilization from the time the shop opens until the time the 5th customer departs is

4.3 Time average number of customers

- The **time average number of customers** *ℓ* in time interval [0, *T*] is the average number of customers in the system at any time in [0, *T*]
- Offers another view of performance from the system's perspective
- Mathematically:
 - Let N(t) be the number of customers in the system at time t
 - \Rightarrow
- For the Fantastic Dan simulation above, let's graph N(t) for $0 \le t \le 158$

Ν	(t)																											
3	↑			 	 •••	 		 	 	 	 	 		 	 	 	 	 	 	 	 								
2			•••	 	 •••	 		 	 	 	 	 	•••	 	 	 	 •••	 	 	 	 								
1			•••	 	 	•••	 	 	 	 	 	•••	 	 	 	 •••	 	 	 	 									

► t

- Then the time average number of customers in time interval [0, 158] is
- Alternatively, suppose N(t) changes value at $t_1, t_2, \ldots, t_{m-1}, t_m$
- For example, for the Fantastic Dan simulation above
- Then the time average number of customers can be computed as