Lesson 6. Replicating Simulations

1 Overview

- So far, we've computed and observed performance measures for 1 simulation run
 - e.g. average delay in the Fantastic Dan problem
- The observed average delay can differ between simulation runs
- Average delay is a random variable
 - Uncertain quantity before the simulation is run
 - Depends on interarrival times and service times, which are random variables
- Can we estimate the distribution of average delay?
 - Let's focus on estimating the mean and variance of this distribution

2 The experiment

- Replicate the simulation *n* times
- Compute performance measure (e.g. average delay) for each simulation run (obtaining *n* observations of the performance measure)
- Use the *n* observations to estimate the mean and variance of the performance measure

3 After the experiment: observed sample mean and sample variance

- Let X_1, \ldots, X_n be independent and identically distributed (i.i.d.) random variables with unknown mean μ and variance σ^2
- Let x_1, \ldots, x_n be the observed values of X_1, \ldots, X_n , respectively
- For example:
 - Think of X_i as the average delay in the *i*th simulation run before the experiment
 - Think of x_i as the observed average delay in the *i*th simulation run after the experiment
 - Since the simulation runs replicate the same system, X_1, \ldots, X_n should be identically distributed
- We want to estimate μ

- The observed sample mean is
 The observed sample variance is
- The observed sample standard deviation is
- We estimate μ using the the observed sample mean
- We estimate σ^2 using the observed sample variance
- We estimate σ using the observed sample standard deviation
- These are **point estimates** for μ , σ^2 and σ , respectively
- Why should we estimate μ and σ^2 this way?

4 Before the experiment: sample mean and sample variance

- The sample mean is
 - The sample mean \overline{X} is a random variable: before the experiment, it is an uncertain quantity
 - $\mathbb{E}[\overline{X}] = \mu$, $\operatorname{Var}(\overline{X}) = \sigma^2/n$:

- The sample variance is
 The sample standard deviation is
 - The sample variance and sample standard deviation are also random variables: <u>before</u> the experiment, they are uncertain quantities

- The sample mean is an unbiased estimator of μ, and the sample variance is an unbiased estimator of σ²: that is,
 - Intuitively, this indicates that using the observed sample mean to estimate μ and the observed sample variance to estimate σ^2 is not a bad idea

5 Confidence intervals: how good is the observed sample mean as an estimate?

- Is the observed sample mean \overline{x} "close" to μ ?
- Suppose \overline{X} is normally distributed
 - This is true if X_1, \ldots, X_n are normally distributed
 - This is approximately true by the Central Limit Theorem if $n \ge 30$
- Then the $(1 \alpha)100\%$ confidence interval for μ is

- This is an **interval estimate** for μ
- Note: more observations (larger n) \Rightarrow smaller confidence intervals
- The *t*-distribution with n 1 degrees of freedom \approx standard Normal distribution when $n \ge 30$

6 Interpreting confidence intervals

- Sample mean \overline{X} and sample standard deviation S^2 are random variables
- Every experiment, we get different observed sample mean \overline{x} and observed sample variance s^2
- \Rightarrow Every experiment, we get a different confidence interval
- After running the experiment many times, $(1 \alpha)100\%$ of the resulting confidence intervals will contain the actual mean μ
- We say that "we are $(1 \alpha)100\%$ confident that the mean μ lies within the confidence interval"
- Wrong interpretation: "The mean μ lies within the confidence interval with $(1 \alpha)100\%$ probability"
- Smaller confidence interval \Rightarrow more accurate estimate of μ

Example 1. Suppose an estimate of μ within 0.1 was desired at a confidence level of 95%. We perform a "warm-up" experiment of n = 30 simulation runs to compute an observed sample variance s^2 , which is found to be 3.2. How many simulations runs are needed to obtain this estimate of μ ?