SA421 – Simulation Modeling Asst. Prof. Nelson Uhan

## Lesson 9. Input Data Analysis - Continuous Distributions

- 1 Continuous random variables and distributions: review
  - A random variable is **continuous** if it can take on a continuum of values
  - Let *X* be a continuous random variable
  - The cumulative distribution function (cdf)  $F_X$  of X is

$$F_X(a) = \Pr\{X \le a\}$$

- The **probability density function (pdf)**  $f_X$  of X is
- Another way the pdf and cdf of a continuous random variable are related:

## 2 The empirical cdf

- Let  $Y_0, \ldots, Y_{n-1}$  be *n* independent and identically distributed (iid) random variables with cdf  $F_Y$
- Let  $y_0, \ldots, y_{n-1}$  be observations of  $Y_0, \ldots, Y_{n-1}$
- In words,  $F_Y(a) = \Pr\{Y \le a\} \approx$
- The empirical cdf is
  - Note that  $F_e(a)$  is a random variable for any fixed value of *a*
- The observed empirical cdf is

**Example 1.** Let n = 4. Suppose the observations of  $Y_0$ ,  $Y_1$ ,  $Y_2$ ,  $Y_3$  are  $y_0 = 3$ ,  $y_1 = 1$ ,  $y_2 = 8$ ,  $y_3 = 4$ . Plot the observed empirical cdf  $\hat{F}_e$ .



• Let  $y_{(0)}, y_{(1)}, \ldots, y_{(n-1)}$  be the observations  $y_0, \ldots, y_{n-1}$  sorted from smallest to largest

$$\Rightarrow \hat{F}_e(y_{(i)}) = \qquad \qquad \text{for } i = 0, 1, \dots, n-1.$$

## 3 Kolmogorov-Smirnov goodness-of-fit test

- Let  $Y_0, \ldots, Y_{n-1}$  be *n* iid continuous random variables
- Let  $y_0, \ldots, y_{n-1}$  be observations of  $Y_0, \ldots, Y_{n-1}$
- Let *X* be the proposed continuous random variable with  $cdf F_X$
- The **Kolmogorov-Smirnov** (**K-S**) goodness-of-fit test compares the empirical cdf of the *Y*<sub>j</sub>'s with the cdf of the proposed random variable *X*
- Question: Do the  $Y_i$ 's share the same distribution as X?
- Null hypothesis *H*<sub>0</sub>: for any *Y<sub>j</sub>*,
- The test statistic is
- The observed test statistic is

- The *p*-value is  $Pr\{D \ge d\}$ 
  - $\sqrt{nD}$  follows a **Kolmogorov distribution**
  - Important caveat:  $\sqrt{nD}$  does not follow a Kolmogorov distribution if the proposed distribution of *X* depends on estimates based on the observations  $y_0, \ldots, y_{n-1}$
  - e.g. if you propose X as an exponential random variable, but guess the mean based on  $y_0, \ldots, y_{n-1}$
  - There are ways around this, some quick-and-dirty, some more rigorous
- How do we compute *d*? Do we really need to consider all values of *x*?



• So, we can compute the observed test statistic as