Lesson 10. Random Number Generation, Testing for Independence

1 Overview

- A random number is a random observation from a Uniform[0,1] distribution
- How do we tell a computer to generate random numbers: i.e., sample independent values from the Uniform[0,1] distribution?
 - $\circ~$ e.g. the uniform function in <code>numpy.random</code>
- It is very difficult to get a computer to do something randomly
 - A computer, by design, follows its instructions blindly, and is therefore completely predictable
 - A computer that doesn't do this is broken!
- One approach: pseudo-random number generators

2 Pseudo-random number generators (PRNGs)

- "Psuedo" means having a deceptive resemblance
- PRNGs are (deterministic) <u>algorithms</u> that use mathematical formulas or precalculated tables to produce sequences of numbers that appear random

2.1 Desirable properties of a PRNG

Efficient. Can produce many numbers in a short amount of time

- **Deterministic.** A given sequence of numbers can be reproduced at a later date if the starting point in the sequence is known
 - Useful for comparing different systems
- **Long cycle.** If the PRNG is periodic (generates a sequence that eventually repeats itself), the cycle length should be sufficiently long
 - Modern PRNGs have a period so long that it can be ignored for most practical purposes
- **Pass statistical tests for uniformity and independence.** Most importantly: these numbers should not be statistically differentiable from a sequence of truly independently sampled values from the Uniform[0, 1] distribution
 - We can test for uniformity using goodness-of-fit tests (e.g. Kolmogorov-Smirnov)
 - We will discuss testing for independence later

3 The linear congruential generator

• Produces sequence of integers X_1, X_2, \ldots using the following recursion:

The initial value X₀ is called the
The minimum possible value of X₁, X₂,... is
The maximum possible value of X₁, X₂,... is

- The stream, or the sequence of generated pseudo-random numbers is
- The modulus is often chosen to be a power of 2: binary computations are fast on a computer
- If *c* = 0, this is a **multiplicative congruential generator**
- If $c \neq 0$, this is a **mixed congruential generator**

3.1 Period length

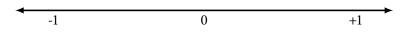
- The **period** of a linear congruential generator (LCG) is the smallest integer *n* such that $X_0 = X_{n-1}$ (how many iterations of the LCG take place before the sequence starts to repeat itself)
- An LCG has **full period** if its period is *m* (Why?)
- Theorem. An LCG has full period if and only if:
 - (i) c and m are relatively prime: the only positive integer that divides both c and m is 1
 - (ii) If *m* is a multiple of 4, then a 1 is a multiple of 4
 - (iii) If *p* is a prime number dividing *m*, then a 1 is a multiple of *p*

Example 1. Consider the LCG with modulus 16, increment 11, and multiplier 9. Confirm that this LCG has full period.

4 Testing for independence

- Many tests have been devised to determine whether a sequence of random variates are independent: testing for independence is a deep problem
- One simple, quick-and-dirty way to test whether these variates are independent is to plot the **autocorre**lation of the sequence
- Roughly speaking, autocorrelation helps us detect repeating patterns in a sequence of values
- Let x_0, \ldots, x_{n-1} and y_0, \ldots, y_{n-1} be sequences of observed random variates
- The observed sample correlation coefficient between (x_0, \ldots, x_{n-1}) and (y_0, \ldots, y_{n-1}) is

- Also known as the Pearson correlation coefficient
- Ranges between −1 and +1:



- The lag-k autocorrelation of (y_0, \ldots, y_{n-1}) is the observed sample correlation coefficient between (y_0, \ldots, y_{n-k-1}) and (y_k, \ldots, y_{n-1})
- In other words, the lag-k autocorrelation helps us detect if there is a pattern between every k observations