
SA421 – Simulation Modeling Fall 2015
Asst. Prof. Nelson Uhan

Lesson 10. Random Number Generation, Testing for Independence

1 Overview

● A random number is a random observation from a Uniform[0, 1] distribution

● How do we tell a computer to generate random numbers: i.e., sample independent values from the
Uniform[0, 1] distribution?

○ e.g. the uniform function in numpy.random

● It is very di�cult to get a computer to do something randomly

○ A computer, by design, follows its instructions blindly, and is therefore completely predictable
○ A computer that doesn’t do this is broken!

● One approach: pseudo-random number generators

2 Pseudo-random number generators (PRNGs)

● “Psuedo” means having a deceptive resemblance

● PRNGs are (deterministic) algorithms that use mathematical formulas or precalculated tables to produce
sequences of numbers that appear random

2.1 Desirable properties of a PRNG

E�cient. Can produce many numbers in a short amount of time

Deterministic. A given sequence of numbers can be reproduced at a later date if the starting point in the
sequence is known

● Useful for comparing di�erent systems

Long cycle. If the PRNG is periodic (generates a sequence that eventually repeats itself), the cycle length
should be su�ciently long

● Modern PRNGs have a period so long that it can be ignored for most practical purposes

Pass statistical tests for uniformity and independence. Most importantly: these numbers should not be
statistically di�erentiable from a sequence of truly independently sampled values from the Uniform[0, 1]
distribution

● We can test for uniformity using goodness-of-�t tests (e.g. Kolmogorov-Smirnov)
● We will discuss testing for independence later

1



3 �e linear congruential generator

● Produces sequence of integers X1, X2, . . . using the following recursion:

○ �e initial value X0 is called the

○ �e minimum possible value of X1, X2, . . . is

○ �e maximum possible value of X1, X2, . . . is

● �e stream, or the sequence of generated pseudo-random numbers is

● �e modulus is o�en chosen to be a power of 2: binary computations are fast on a computer

● If c = 0, this is amultiplicative congruential generator

● If c ≠ 0, this is amixed congruential generator

3.1 Period length

● �e period of a linear congruential generator (LCG) is the smallest integer n such that X0 = Xn−1
(how many iterations of the LCG take place before the sequence starts to repeat itself)

● An LCG has full period if its period is m (Why?)

● �eorem. An LCG has full period if and only if:

(i) c and m are relatively prime: the only positive integer that divides both c and m is 1
(ii) If m is a multiple of 4, then a − 1 is a multiple of 4
(iii) If p is a prime number dividing m, then a − 1 is a multiple of p

Example 1. Consider the LCG with modulus 16, increment 11, and multiplier 9. Con�rm that this LCG has
full period.

2



4 Testing for independence

● Many tests have been devised to determine whether a sequence of random variates are independent:
testing for independence is a deep problem

● One simple, quick-and-dirty way to test whether these variates are independent is to plot the autocorre-
lation of the sequence

● Roughly speaking, autocorrelation helps us detect repeating patterns in a sequence of values

● Let x0, . . . , xn−1 and y0, . . . , yn−1 be sequences of observed random variates

● �e observed sample correlation coe�cient between (x0, . . . , xn−1) and (y0, . . . , yn−1) is

○ Also known as the Pearson correlation coe�cient
○ Ranges between −1 and +1:

-1 +10

● �e lag-k autocorrelation of (y0, . . . , yn−1) is the observed sample correlation coe�cient between
(y0, . . . , yn−k−1) and (yk , . . . , yn−1)

● In other words, the lag-k autocorrelation helps us detect if there is a pattern between every k observations

3


