Lesson 2. Performance Measures for Queueing Systems

1 A small example

We motivate our consideration of performance measures with the following system with a first-in-first-out (FIFO) queue and a single server.

Suppose that we simulate the system with 4 customers, starting at time 0 . We obtain the time measurements as shown below.

Customer	Arrival time	Time leaves queue	Departure time
1	0	0	8
2	4	8	10
3	6	10	12
4	15	15	20

2 Customer-level performance measures: delay and waiting time

Recall the definitions of delay and waiting time from SA402:

- Delay is the time a customer spends in the queue.
- Waiting time is the time a customer spends in the system from arrival to departure.

Calculate the delay and waiting time for the four customers as well as the average delay and average waiting time in the table below.

Customer	Delay	Waiting Time
1		
2		
3		
4		
Average		

3 System-level performance measures: busy servers and customers in queue

System-level performance measures describe how the overall system is performing. We define utilization and timeaverage number of customers in queue over a given time horizon T.

- The time-average number of busy servers is the integral of the number of busy servers from 0 to T, divided by T.
- This is a weighted average of the number of busy servers. Each number is weighted by the length of time that number of servers are busy.
- When there is one server, this is the proportion of the time horizon that the server is busy.
- The time-average number of customers in queue is the integral of the number of customers in queue from 0 to T, divided by T.
- Intuitively, this is a weighted average of the number of customers in the queue. Each number is weighted by the length of time the queue contains that number.

Here is a graph depicting the busy times of the server:

Calculate the time-average number of busy servers from this graph using $T=20$.

Now consider the following graph depicting the number of customers in queue:

Calculate the time-average number of customers in queue from the graph using $T=20$.

