Lesson 10. Generating Randomness

1 Random numbers

- A **random number** is a random observation from a Uniform[0,1] distribution
- How do we tell a computer to generate random numbers: i.e., sample independent values from the Uniform[0,1] distribution?
- It is very difficult to get a computer to do something randomly
 - A computer, by design, follows its instructions blindly, and is therefore completely predictable
 - A computer that doesn't do this is broken!
- One approach: **pseudo-random number generators**

1.1 Pseudo-random number generators (PRNGs)

- "Psuedo" means having a deceptive resemblance
- PRNGs are (deterministic) <u>algorithms</u> that use mathematical formulas or precalculated tables to produce sequences of numbers that appear random

1.2 Desirable properties of a PRNG

Efficient. Can produce many numbers in a short amount of time

- **Deterministic.** A given sequence of numbers can be reproduced at a later date if the starting point in the sequence is known
 - Useful for comparing different systems
- **Long cycle.** If the PRNG is periodic (generates a sequence that eventually repeats itself), the cycle length should be sufficiently long
 - Modern PRNGs have a period so long that it can be ignored for most practical purposes

Pass statistical tests for uniformity and independence. Most importantly: these numbers should not be statistically differentiable from a sequence of truly independently sampled values from the Uniform[0, 1] distribution

• We can test for uniformity using goodness-of-fit tests (e.g. Kolmogorov-Smirnov)

1.3 The linear congruential generator

• Produces sequence of integers X_1, X_2, \ldots using the following recursion:

The initial value X₀ is called the
The minimum possible value of X₁, X₂,... is
The maximum possible value of X₁, X₂,... is

- The stream, or the sequence of generated pseudo-random numbers is
- The modulus is often chosen to be a power of 2: binary computations are fast on a computer
- If *c* = 0, this is a **multiplicative congruential generator**
- If $c \neq 0$, this is a **mixed congruential generator**
- The **period** of a linear congruential generator (LCG) is the smallest integer *n* such that $X_0 = X_{n-1}$ (how many iterations of the LCG take place before the sequence starts to repeat itself)
- An LCG has **full period** if its period is *m* (Why?)
- Theorem. An LCG has full period if and only if:
 - (i) *c* and *m* are relatively prime: the only positive integer that divides both *c* and *m* is 1
 - (ii) If *m* is a multiple of 4, then a 1 is a multiple of 4
 - (iii) If p is a prime number dividing m, then a 1 is a multiple of p

Example 1. Consider the LCG with modulus 16, increment 11, and multiplier 9. Confirm that this LCG has full period.

2 Random variates

- A random variate is a particular outcome of a random variable
- In other words, a random variate is a sample from a probability distribution
- How can we generate random variates?
- One method: the inverse transform method
- Big picture:
 - We want to generate random variates of X with $\operatorname{cdf} F_X$
 - We have a pseudo-random number generator
 - \diamond i.e. pseudo-random numbers, or samples from $U \sim \text{Uniform}[0,1]$
 - $\circ~$ We will transform these pseudo-random numbers into random variates of X
- How do we do this transformation?

3 The discrete case

Example 2. Consider the random variable *X* with cdf

$$F_X(a) = \begin{cases} 0 & \text{if } a < 2, \\ 0.3 & \text{if } 2 \le a < 4, \\ 0.8 & \text{if } 4 \le a < 7, \\ 1 & \text{if } a \ge 7. \end{cases}$$

b. What is $p_X(4) = \Pr\{X = 4\}$? *Hint*. $\Pr\{a < X \le b\} = \Pr\{X \le b\} - \Pr\{X \le a\}$.

c. Let's split the interval [0,1] into subintervals according to the cdf F_X , and assign values of X to each subinterval like so:

Suppose you generate a lot of random numbers (samples from Uniform[0,1]). What percentage of them will belong to the interval corresponding to X = 4?

More generally...

- Let *X* be a discrete random variable taking values $a_1 < a_2 < a_3 < \dots$
- Define $a_0 = -\infty$ so that $F_X(a_0) = 0$
- A random variate generator for X is

$$X = a_i$$
 if $F_X(a_{i-1}) < U \le F_X(a_i)$ for $i = 1, 2, ...$ where $U \sim \text{Uniform}[0, 1]$

- So, to generate a random variate of *X* with cdf F_X :
 - 1: Generate pseudo-random number u (i.e. sample from $U \sim \text{Uniform}[0,1]$)
 - 2: Find a_i such that $F_X(a_{i-1}) < u \le F_X(a_i)$
 - 3: Set $x \leftarrow a_i$
 - 4: Output *x*, random variate of *X*

4 The continuous case

- Now suppose *X* is a continuous random variable
- We can't assign values of *X* to intervals of [0,1] because *X* takes on a continuum of values!
- New, related idea: set $X = F_X^{-1}(U)$ where $U \sim \text{Uniform}[0,1]$
- Why does this transformation work?

$$\Pr\{X \le a\} = \Pr\{F_X^{-1}(U) \le a\} = \Pr\{F_X(F_X^{-1}(U)) \le F_X(a)\} = \Pr\{U \le F_X(a)\} = F_X(a)$$

- Therefore, $X = F_X^{-1}(U)$ is a **random variate generator** for X
- To generate a random variate of X with $cdf F_X$:
 - 1: Generate pseudo-random number *u*

2: Set
$$x \leftarrow F_X^{-1}(u)$$

3: Output x, random variate of X

Example 3.

Let *X* be a continuous random variable with cdf

$$F_X(a) = \begin{cases} 0 & \text{if } a < 0\\ a^2 & \text{if } 0 \le a < 1\\ 1 & \text{if } a \ge 1 \end{cases}$$

Find a random variate generator for *X*.