
Ann Oper Res
DOI 10.1007/s10479-012-1294-z

Flow shop scheduling with peak power consumption
constraints

Kan Fang · Nelson A. Uhan · Fu Zhao ·
John W. Sutherland

© US Government 2013

Abstract We study scheduling as a means to address the increasing energy concerns in
manufacturing enterprises. In particular, we consider a flow shop scheduling problem with
a restriction on peak power consumption, in addition to the traditional time-based objec-
tives. We investigate both mathematical programming and combinatorial approaches to this
scheduling problem, and test our approaches with instances arising from the manufacturing
of cast iron plates.

Keywords Scheduling · Flow shop · Energy · Peak power consumption · Integer
programming · Combinatorial optimization

1 Introduction

Under the pressures of climate change, increasing energy costs, and growing energy secu-
rity concerns, manufacturing enterprises have become more and more interested in reducing
their energy and power consumption. Until recently, most efforts aimed at minimizing en-
ergy and power consumption in manufacturing have been focused on developing machines

K. Fang
School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
e-mail: fang19@purdue.edu

N.A. Uhan (�)
Mathematics Department, United States Naval Academy, Annapolis, MD 21402, USA
e-mail: uhan@usna.edu

F. Zhao
Division of Environmental and Ecological Engineering and School of Mechanical Engineering,
Purdue University, West Lafayette, IN 47904, USA
e-mail: fzhao@purdue.edu

J.W. Sutherland
Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907,
USA
e-mail: jwsuther@purdue.edu

Author's personal copy

mailto:fang19@purdue.edu
mailto:uhan@usna.edu
mailto:fzhao@purdue.edu
mailto:jwsuther@purdue.edu

Ann Oper Res

and equipment that are more energy and power efficient. However, several researchers have
observed that in various manufacturing enterprises, energy and power consumption can
also be reduced through alternate operational strategies, such as the smarter management
and scheduling of machine start-up and machine idling (e.g. Dahmus and Gutowski 2004;
Gutowski et al. 2005; Drake et al. 2006). In this work, we explore the use of scheduling as a
means to reduce the energy and power consumption of manufacturing enterprises.

Research on using scheduling to reduce energy and power consumption in manufactur-
ing is rather sparse. One exception is the work by Mouzon et al. (2007), who proposed
several dispatching rules and a multi-objective mathematical programming formulation for
scheduling jobs on a single CNC machine in a way that minimizes energy consumption and
total completion time. In addition, Mouzon and Yildirim (2008) proposed a metaheuristic
algorithm to minimize the total energy consumption and total tardiness on a single machine.
Fang et al. (2011) provided some preliminary insights into the modeling and algorithmic
challenges of shop scheduling problems with energy and power criteria.

On the other hand, there is a considerable body of literature on scheduling computer
processors in a way that minimizes energy consumption. In these settings, the processors
can be run at varying speeds: reducing the speed of a processor lowers power consumption,
but results in longer processing time. This energy saving technique is called dynamic voltage
scaling, or speed scaling, and was originally studied by Yao et al. (1995). In most of the
research on speed scaling, it is assumed that the processor speed can be chosen arbitrarily
from a continuous range and the associated power consumption is an exponential function
of the speed. One example of work done under this assumption is that of Bansal et al.
(2007), who studied the design and performance of speed scaling algorithms for scheduling
jobs with deadlines to address concerns with energy and temperature. Other researchers
have also considered the case where only a number of discrete speeds are available. For
example, Kwon and Kim (2005) proposed a voltage allocation technique for discrete supply
voltages to produce a preemptive task schedule that minimizes total energy consumption.
Other power functions have also been considered in the literature (e.g. Bansal et al. 2009).
For more pointers on the ever-growing literature on speed scaling, we refer the reader to the
surveys by Irani and Pruhs (2005) and Albers (2010).

In the speed scaling literature, it is typically assumed that each job needs to be processed
on a single processor or one of multiple parallel processors. This is to be expected, as this
matches typical computing environments. However, in a typical manufacturing environment,
jobs often need to be processed on multiple machines in some order; in other words, in some
kind of job shop environment. As a result, much of the work on speed scaling is not directly
applicable to the problems faced by manufacturing enterprises. In this work, we aim to begin
to fill this gap. In particular, we consider a permutation flow shop scheduling problem with
objectives based on time and power. To the best of our knowledge, our paper is one of the
first in-depth studies of shop scheduling with both time and power related criteria.

Most recent research assumes that reducing the average power consumption propor-
tionately decreases energy costs. However, peak power consumption—that is, the maxi-
mum power consumption over all time instants—also plays a key role in the energy costs
of electricity-intensive manufacturing enterprises; for example, many energy providers use
time-of-use (TOU) tariffs (e.g. Babu and Ashok 2008). Peak power consumption has also
received some attention in the speed scaling literature, since it affects the power supply and
cooling technologies in the design of computer processors. Several researchers have studied
different approaches to reduce peak power consumption on a single processor or parallel
processors (e.g. Felter et al. 2005; Kontorinis et al. 2009; Cochran et al. 2011).

Author's personal copy

Ann Oper Res

Due to the nature of energy costs in manufacturing environments, we consider the multi-
objective problem of minimizing the makespan and the peak power consumption in a per-
mutation flow shop. In particular, we search for Pareto optimal schedules, or schedules for
which no other schedule has both lower makespan and lower peak power consumption. In
order to handle the bicriteria nature of this problem, we fix an upper bound on the peak
power consumption, and minimize the makespan of the schedule. We consider the problem
when speeds are discrete and when they are continuous. In addition, we consider flow shops
with both zero and unlimited intermediate storage between machines. (In a flow shop with
zero intermediate storage, a completed job cannot leave the current machine until the next
machine is available.) For simplicity, in this paper, we refer to this problem as the permuta-
tion flow shop scheduling problem with peak power consumption constraints, or the PFSPP
problem for short.

We consider both mathematical programming and combinatorial approaches to the PF-
SPP problem. Unlike most classical scheduling problems, we need to be able to keep track of
which jobs are running concurrently at any time in order to take the peak power consumption
into account. This presents some interesting modeling and algorithmic challenges, and some
of our results may be of interest in other scheduling applications (e.g. Thörnblad et al. 2010).
For the case of discrete speeds and unlimited intermediate storage, we propose two mixed
integer programming formulations, inspired by existing formulations for shop scheduling
problems (Manne 1960; Lasserre and Queyranne 1992). In order to strengthen these for-
mulations, we give valid inequalities that exploit the structure of optimal schedules and the
properties of concurrently running jobs. We also test the computational performance of these
two formulations and the effectiveness of these valid inequalities on a set of instances based
on the manufacture of cast iron plates with slots.

We also examine the PFSPP problem with two machines and zero intermediate storage.
When speeds are discrete, we show that this problem is equivalent to a special case of the
asymmetric traveling salesperson problem. We also consider the case when speeds are con-
tinuous and the power consumption is an exponential function of speed. In this case, we
show that there exists an optimal schedule in which the total peak power consumption at
any time instant is equal to exactly the fixed upper bound, and that this problem can be
transformed to an equivalent asymmetric traveling salesperson problem. Moreover, if the
jobs have some special features, we obtain combinatorial polynomial time algorithms for
finding optimal schedules.

2 Mathematical description of the problem

As we mentioned in the introduction, we refer to the flow shop scheduling problem that
we study in this paper as the permutation flow shop problem with power consumption con-
straints (or the PFSPP problem for short). An instance of the PFSPP problem consists of
a set J = {1,2, . . . , n} of jobs and a set M = {1,2, . . . ,m} of machines. Each job j on
machine i has a work requirement pij , and must be processed nonpreemptively first on ma-
chine 1, then on machine 2, and so on. There is a set of speeds S : a job j ∈ J processed on
machine i ∈ M at speed s ∈ S has an associated processing time pijs and power consump-
tion qijs. In addition, we are given a threshold Qmax on the total power consumption at any
time instant of the schedule.

Assumption 2.1 We assume that when we process a job at a higher speed, its processing
time decreases, while its power consumption increases. That is, as s increases, pijs decreases

Author's personal copy

Ann Oper Res

and qijs increases. In addition, we assume that the power consumption associated with pro-
cessing a job on a machine at a particular speed is constant from the job’s start time until but
not including the job’s completion time. Finally, we assume that mins∈S {qijs} ≤ Qmax for all
i ∈ M and j ∈ J .

In this paper, we focus on minimizing the makespan Cmax, the completion time of the last
job on the last machine m. We define a feasible schedule as a schedule in which the total
power consumption at any time is no more than the given threshold Qmax. Then, depending
on the type of the speed set and flow shop environment, we define the following variants of
the PFSPP problem.

Problem 2.2 The set of speeds set S = {s1, s2, . . . , sd} is discrete. The flow shop has un-
limited intermediate storage. Each job j ∈ J on machine i ∈ M has processing time pijs

and power consumption qijs when processed at speed s ∈ S . Find a feasible schedule that
minimizes the makespan Cmax.

Instead of giving an explicit equation for power as a function of speed, we assume that
the relationship between processing time, power consumption and speed can be arbitrary in
Problem 2.2, as long as it satisfies Assumption 2.1. Without loss of generality, we assume
that s1 < s2 < · · · < sd .

We also consider a variant of Problem 2.2, in which the flow shop has two machines and
zero intermediate storage.

Problem 2.3 The set of speeds S = {s1, s2, . . . , sd} is discrete. The flow shop has two ma-
chines, that is, M = {1,2}, and zero intermediate storage. Each job j ∈ J on machine
i ∈ M has processing time pijs and power consumption qijs when processed at speed s ∈ S .
Find a feasible solution that minimizes the makespan Cmax.

Unlike in Problems 2.2 and 2.3, it might be the case that each job can run at an arbitrary
speed within a given continuous range. It is typical to have power as an exponential function
of speed (e.g. Bouzid 2005; Mudge 2001). We consider the following two machine variant
of the PFSPP problem with zero intermediate storage.

Problem 2.4 The set of speeds S = [smin, smax] is continuous. The flow shop has two ma-
chines, that is, M = {1,2}, and zero intermediate storage. Each job j processed on machine
i at speed s ∈ S has processing time pijs = pij /s and power consumption qijs = sα for some
constant α > 1. Find a feasible schedule that minimizes the makespan Cmax.

3 Discrete speeds and unlimited intermediate storage: mixed integer programming
formulations

A great deal of research has focused on solving the ordinary permutation flow shop
scheduling problem (without power consumption considerations) with integer program-
ming approaches. These efforts have primarily looked at two families of mixed inte-
ger programs. One is based on Manne’s (1960) formulation that uses linear ordering
variables and pairs of dichotomous constraints (called the disjunctive constraints) to en-
sure one job is processed before another or vice versa. The other is based on Wagner’s
(1959) use of the classical assignment problem to assign jobs to positions on machines.

Author's personal copy

Ann Oper Res

Fig. 1 Gantt chart for
Example 3.1

Researchers have investigated the computational performance of different mixed integer
programs for the ordinary permutation flow shop scheduling problem from these two
families with respect to various objectives (e.g. Stafford et al. 2005; Keha et al. 2009;
Unlu and Mason 2010).

In this work, we propose two mixed integer programming formulations, inspired by the
work of Manne (1960) and Wagner (1959). In particular, we follow a variant of Wagner’s
formulation proposed by Lasserre and Queyranne (1992), which models the relationship
between jobs and their position in a permutation. We will compare the performance of
these two mixed integer programming formulations to discover some promising formula-
tion paradigms that can subsequently be applied to solve larger scheduling problems with
peak power consumption constraints.

Unlike most ordinary flow shop scheduling problems, in the PFSPP problem, we need to
keep track of jobs that are running concurrently on machines at any time. For this reason,
we cannot directly apply the existing mixed integer programming formulations mentioned
above. In order to build upon these formulations, we use the following observation. Note
that in the PFSPP problem, each job must be processed nonpreemptively with exactly one
speed s ∈ S on each machine. As a result, when a job is started on a given machine, the
power consumption of that machine will stay the same until this job is finished. For any time
instance t , let Jt be the set of jobs being processed at t . Let CL

t (SL
t) be the completion (start)

time of the last job that is completed (started) before time t . Let CR
t (SR

t) be the completion
(start) time of the first job that is completed (started) after time t . Denote t1 = max{CL

t , SL
t }

and t2 = min{CR
t , SR

t }. Then for any time t ′ within [t1, t2), we have Jt ′ = Jt , which implies
that the total power consumption in the flow shop is a constant between t1 and t2.

Example 3.1 Consider the following example that illustrates the above observation. At
time t , there are three jobs Jt = {j, k, l} that are processed concurrently (see Fig. 1). SL

t is
the start time of job k on machine g, CL

t is the completion time of job r on machine i. In
this example, SL

t < CL
t , so we have t1 = CL

t . Similarly, we have t2 = CR
t , which is the com-

pletion time of job j on machine f . Then within [t1, t2), the total power consumption in the
flow shop is constant.

Inspired by this observation, we propose mixed integer programs with binary variables
that keep track of jobs that are running concurrently on any two different machines only
at job start and completion times. First, we propose a mixed integer program in Sect. 3.1
inspired by Manne (1960), which we will call the disjunctive formulation. In Sect. 3.2, we
propose another mixed integer program inspired by Lasserre and Queyranne (1992), which
we will call the assignment and positional formulation (or AP formulation for short). For
the remainder of this section, we assume that all data are integer.

Author's personal copy

Ann Oper Res

3.1 Disjunctive formulation

In this section, we propose a mixed integer program inspired by Manne’s (1960) formula-
tion. We define the following decision variables:

• Cmax is the makespan of the schedule;
• Cij is the completion time of job j on machine i;
• Sij is the start time of job j on machine i;
• δjk is equal to 1 if job j precedes job k, and 0 otherwise;
• xijs is equal to 1 if job j is processed on machine i with speed s, and 0 otherwise;
• uhkij is equal to 1 if the start time of job k on machine h is less than or equal to the start

time of job j on machine i (in other words, Shk ≤ Sij), and 0 otherwise;
• vhkij is equal to 1 if the completion time of job k on machine h is greater than the start

time of job j on machine i (in other words, Chk > Sij), and 0 otherwise;
• yhkij is equal to 1 if the start time of job j on machine i occurs during the processing of

job k on machine h (in other words, Shk ≤ Sij < Chk), and 0 otherwise;
• zhksij is equal to 1 if job k is processed on machine h with speed s, and is processed while

job j starts on machine i (in other words, if xhks = 1 and yhkij = 1), and 0 otherwise.

We call the binary decision variables u,v, y and z the concurrent job variables. Let M

be an upper bound on the makespan of an optimal schedule. For simplicity, we let M =∑
i∈M

∑
j∈J pij1. Problem 2.2 can be modeled as follows:

minimize Cmax (3.1a)

subject to

Cmax ≥ Cmj for j ∈ J ; (3.1b)

C1j ≥
∑

s∈S

p1jsx1js for j ∈ J ; (3.1c)

Cij ≥ Ci−1,j +
∑

s∈S

pijsxijs for i ∈ M\{1}; j ∈ J ; (3.1d)

Cij ≥ Cik +
∑

s∈S

pijsxijs − Mδjk for i ∈ M; j, k ∈ J , k > j ; (3.1e)

Cik ≥ Cij +
∑

s∈S

piksxiks − M(1 − δjk) for i ∈ M; j, k ∈ J , k > j ; (3.1f)

Cij = Sij +
∑

s∈S

pijsxijs for i ∈ M; j ∈ J ; (3.1g)

Sij − Shk ≤ Muhkij − 1 for i, h ∈ M; j, k ∈ J ; (3.1h)

Shk − Sij ≤ M(1 − uhkij) for i, h ∈ M; j, k ∈ J ; (3.1i)

Chk − Sij ≤ Mvhkij for i, h ∈ M; j, k ∈ J ; (3.1j)

Sij − Chk ≤ M(1 − vhkij) − 1 for i, h ∈ M; j, k ∈ J ; (3.1k)

uhkij + vhkij = 1 + yhkij for i, h ∈ M; j, k ∈ J ; (3.1l)

xhks + yhkij ≤ 1 + zhksij for i, h ∈ M; j, k ∈ J ; s ∈ S; (3.1m)
∑

s∈S

xijs = 1 for i ∈ M; j ∈ J ; (3.1n)

δjk + δkj = 1 for j, k ∈ J , j �= k; (3.1o)

Author's personal copy

Ann Oper Res

δjk + δkl + δlj ≤ 2 for j, k, l ∈ J , j �= k �= l; (3.1p)
∑

s∈S

qijsxijs +
∑

h∈M,h�=i

∑

k∈J

∑

s∈S

qhkszhksij ≤ Qmax for i ∈ M; j ∈ J ; (3.1q)

xijs, δjk, uhkij , vhkij , yhkij , zhksij ∈ {0,1} for i, h ∈ M; j, k ∈ J ; s ∈ S. (3.1r)

The objective (3.1a) and the constraints (3.1b) ensure that the makespan is equal to the
completion time of the last job processed on machine m. Constraints (3.1c)–(3.1f) ensure
that the completion times are consistent with a flow shop. In particular, constraints (3.1e)–
(3.1f) are the disjunctive constraints between any two jobs j and k: they ensure that job j

is processed before job k or vice versa. Constraints (3.1g) ensure that jobs are processed
nonpreemptively. Constraints (3.1h)–(3.1m) ensure that the concurrent job variables u, v, y

and z take their intended values. Constraints (3.1n) indicate that each job can be processed
on any given machine with exactly one speed. Constraints (3.1o)–(3.1p) ensure that the jobs
are processed in the same order on every machine. Finally, constraints (3.1q) ensure that at
any time, the total power consumption across machines does not exceed the threshold Qmax.

3.2 Assignment and positional formulation

Next, we give another formulation of our problem, inspired by the formulation proposed
by Lasserre and Queyranne (1992), which uses binary variables to directly assign jobs to
positions in a permutation. A variant of this formulation was proposed in Fang et al. (2011).
We define the following decision variables:

• Cmax is the makespan of the schedule;
• Cij is the completion time of the j th job processed on machine i (note that “j th job”

refers to the j th position, not job j);
• Sij is the start time of the j th job processed on machine i;
• xijks is equal to 1 if job j is the kth job processed on machine i with speed s, and 0

otherwise;
• uhkij is equal to 1 if the start time of the kth job processed on machine h is less than or

equal to the start time of the j th job processed on machine i (in other words, Shk ≤ Sij),
and 0 otherwise;

• vhkij is equal to 1 if the completion time of the kth job processed on machine h is greater
than the start time of the j th job processed on machine i (in other words, Chk > Sij), and
0 otherwise;

• yhkij is equal to 1 if the start time of the j th job processed on machine i occurs during the
processing of the kth job on machine h (in other words, Shk ≤ Sij < Chk), and 0 otherwise;

• zhlksij is equal to 1 if job l is the kth job processed on machine h with speed s, and is
processed while the j th job starts on machine i (in other words, if xhlks = 1 and yhkij = 1),
and 0 otherwise.

As with the disjunctive formulation, we call the decision variables u,v, y and z the con-
current job variables.

3.2.1 Lower and upper bounds for start and completion time decision variables

For the decision variables representing start and completion times, we can obtain simple
lower bounds and upper bounds as follows. Let Ωij be the set of jobs with the smallest j

values of {pikd : k ∈ J }, and let Δj be the set that contains the jobs with the largest j values
of {∑i∈M pik1 : k ∈ J }. Then, we have the following:

Author's personal copy

Ann Oper Res

Sij ≥ min
k∈J

{
i−1∑

h=1

phkd

}

+
∑

k∈Ωi,j−1

pikd � Sij for all i ∈ M, j ∈ {1, . . . , n}, (3.2)

Cij ≤
∑

k∈Δj−1

∑

i∈M

pik1 + max
k∈J \Δj−1

{
i∑

h=1

phk1

}

� Cij for all i ∈ M, j ∈ {1, . . . , n}.
(3.3)

Clearly, the upper bound Cmn for Cmn is also an upper bound for the makespan. For sim-
plicity’s sake, we define Sij = Cij and Cij = Sij for all i ∈ M and j = 1, . . . , n.

3.2.2 Basic AP formulation

Using the above lower and upper bounds, we can formulate Problem 2.2 as follows:

minimize Cmax (3.4a)

subject to

Cmax ≥ Cmn (3.4b)

C11 ≥
∑

j∈J

∑

s∈S

p1jsx1j1s (3.4c)

Cik ≥ Ci−1,k +
∑

j∈J

∑

s∈S

pijsxijks for i ∈ M\{1}; k ∈ {1,2, . . . , n}; (3.4d)

Cik ≥ Ci,k−1 +
∑

j∈J

∑

s∈S

pijsxijks for i ∈ M; k ∈ {2, . . . , n}; (3.4e)

Cik = Sik +
∑

j∈J

∑

s∈S

pijsxijks for i ∈ M; k ∈ {1,2, . . . , n}; (3.4f)

Sij − Shk ≤ (Sij − Shk)uhkij − 1 for i, h ∈ M; j, k ∈ {1,2, . . . , n}; (3.4g)

Shk − Sij ≤ (Shk − Sij)(1 − uhkij) for i, h ∈ M; j, k ∈ {1,2, . . . , n}; (3.4h)

Chk − Sij ≤ (Chk − Sij)vhkij for i, h ∈ M; j, k ∈ {1,2, . . . , n}; (3.4i)

Sij − Chk ≤ (Sij − Chk)(1 − vhkij) − 1 for i, h ∈ M; j, k ∈ {1,2, . . . , n}; (3.4j)

uhkij + vhkij = 1 + yhkij for i, h ∈ M; j, k ∈ {1,2, . . . , n}; (3.4k)

xhlks + yhkij ≤ 1 + zhlksij for i, h ∈ M; j, k, l ∈ {1,2, . . . , n}; s ∈ S; (3.4l)

yhkij ≤ uhkij for i, h ∈ M; j, k ∈ {1,2, . . . , n}; (3.4m)

yhkij ≤ vhkij for i, h ∈ M; j, k ∈ {1,2, . . . , n}; (3.4n)
n∑

k=1

∑

s∈S

xijks = 1 for i ∈ M; j ∈ J ; (3.4o)

∑

j∈J

∑

s∈S

xijks = 1 for i ∈ M; k ∈ {1,2, . . . , n}; (3.4p)

∑

s∈S

xijks =
∑

s∈S

xhjks for i, h ∈ M; j, k ∈ {1,2, . . . , n}; (3.4q)

∑

h∈M,h�=i

∑

l∈J

n∑

r=1

∑

s∈S

qhlszhlrsik +
∑

j∈J

∑

s∈S

qijsxijks ≤ Qmax for i ∈ M; k ∈ {1,2, . . . , n};

(3.4r)

Author's personal copy

Ann Oper Res

xijks, uhkij , vhkij , yhkij , zhlksij ∈ {0,1} for i, h ∈ M; j, l, k ∈ {1,2, . . . , n}; s ∈ S. (3.4s)

The objective (3.4a) and the constraint (3.4b) ensures that the makespan of the schedule is
equal to the completion time of the last job on the last machine. Constraints (3.4c)–(3.4e)
ensure that the completion times are consistent with a flow shop. Constraints (3.4f) ensure
that jobs are processed nonpreemptively. Constraints (3.4g)–(3.4n) ensure that the concur-
rent job variables u,v, y and z take their intended values. Constraints (3.4o) ensure that on
each machine each job is processed with exactly one speed and one position. Constraints
(3.4p) ensure that each position is assigned with exactly one job and one speed. Constraints
(3.4q) ensure that the jobs are processed in the same order on each machine. Finally, con-
straints (3.4r) ensure that at any time, the total power consumption across machines is at
most Qmax. We call the above formulation (3.4a)–(3.4s) the basic AP formulation.

3.2.3 Strengthening the basic AP formulation: concurrent job valid inequalities

Recall that the variables u, v, y, z are related to the jobs running concurrently at job start and
completion times. In this subsection, we show how to strengthen the basic AP formulation by
giving valid inequalities based on the definitions of these variables. We call these inequalities
the concurrent job valid inequalities.

Theorem 3.2 The following inequalities are valid for the mixed integer program (3.4a)–
(3.4s):

n∑

r=k+1

uhrij ≤ (n − k)uhkij for i, h ∈ M; j, k ∈ {1,2, . . . , n}. (3.5a)

Proof Fix h, k, i, j . If uhkij = 0, i.e. Shk > Sij , then for each r = k + 1, . . . , n, we must also
have Shr > Sij in any feasible schedule, and so by the definition of the variables u, we have
uhrij = 0. On the other hand, if uhkij = 1, the left hand side of inequality (3.5a) is at most
n − k, since uhrij for r = k + 1, . . . , n are binary variables. Therefore, the above inequality
is valid. �

Theorem 3.3 The following inequalities are valid for the mixed integer program (3.4a)–
(3.4s):

k−1∑

r=1

vhrij ≤ (k − 1)vhkij for i, h ∈ M; j, k ∈ {1,2, . . . , n}. (3.5b)

Proof Fix h, k, i, j . If vhkij = 0, i.e. Chk ≤ Sij , then for each r = 1,2, . . . , k − 1, we must
also have Chr ≤ Sij in any feasible schedule, and so by the definition of variables v, we have
vhrij = 0. On the other hand, if vhkij = 1, the left hand side of inequality (3.5b) is at most
k −1, since vhrij for r = 1,2, . . . , k −1 are binary variables. Therefore, the above inequality
is valid. �

Theorem 3.4 The following inequalities are valid for the mixed integer program (3.4a)–
(3.4s):

yhkij =
∑

l∈J

∑

s∈S

zhlksij for i, h ∈ M; j, k ∈ {1,2, . . . , n}. (3.5c)

Author's personal copy

Ann Oper Res

Proof Fix h, k, i, j . If yhkij = 0, then by the definition of variables z, we have zhlksij = 0 for
all l and s. Now suppose yhkij = 1. From constraints (3.4p) we have

∑
l∈J

∑
s∈S xhlks = 1.

Without loss of generality, suppose job r is assigned to position k on machine h with speed
s; i.e., xhrks = 1. Then by the definition of variables z, we have zhrksij = 1 and zhlksij = 0 for
any other job l �= r , and so

∑
l∈J

∑
s∈S zhlksij = 1. �

Theorem 3.5 The following inequalities are valid for the mixed integer program (3.4a)–
(3.4s):

n∑

k=1

yhkij ≤ 1 for i, h ∈ M; j ∈ {1,2, . . . , n}. (3.5d)

Proof For each position j on machine i, there exists at most one position k on machine h

that satisfies Shk ≤ Sij < Chk , since at most one job is processed in each position. �

Theorem 3.6 The following inequalities are valid for the mixed integer program (3.4a)–
(3.4s):

uhkij + uijhk

≤ 1

2
(yhkij + yijhk) + 1 ≤ vhkij + vijhk for i, h ∈ M; j, k ∈ {1,2, . . . , n}. (3.5e)

Proof Fix h, k, i, j . Suppose yhkij + yijhk = 0, i.e., yhkij = yijhk = 0, or Shk ≥ Cij or
Sij ≥ Chk . Without loss of generality, assume Shk ≥ Cij , which implies Chk ≥ Shk ≥
Cij ≥ Sij . Then, by definition we have uhkij = 0, uijhk = 1, vhkij = 1, and vijhk = 0, and
so the inequality (3.5e) holds. Now suppose yhkij + yijhk = 1. Without loss of generality,
assume yhkij = 1 and yijhk = 0. Then we have Shk ≤ Sij < Chk . By definition we have
uhkij = 1, uijhk = 0, and vhkij = vijhk = 1, and so the inequality (3.5e) also holds. Fi-
nally, if yhkij + yijhk = 2, i.e., yhkij = yijhk = 1, or Shk = Sij , then by definition we have
uhkij = uijhk = 1 and vhkij = vijhk = 1, and so inequality (3.5e) still holds. �

Theorem 3.7 For each i, h ∈ M and j ∈ {1,2, . . . , n}, the following inequalities are valid
for the mixed integer program (3.4a)–(3.4s):

uh,k+1,ij + vh,k−1,ij ≤ 1 − yhkij for k ∈ {2, . . . , n − 1}. (3.5f)

Proof Fix h, k, i, j . If yhkij = 1, i.e., Shk ≤ Sij < Chk , then we have Sh,k+1 > Sij and
Ch,k−1 ≤ Sij , or in other words, uh,k+1,ij = vh,k−1,ij = 0. So in this case, inequality (3.5f)
holds. Otherwise, because Ch,k−1 < Sh,k+1, we have that Sh,k+1 ≤ Sij and Ch,k−1 > Sij can-
not be satisfied simultaneously, or in other words, uh,k+1,ij + vh,k−1,ij ≤ 1. So in this case as
well, inequality (3.5f) holds. �

Theorem 3.8 For each i, h ∈ M and j ∈ {2, . . . , n− 1}, the following inequalities are valid
for the mixed integer program (3.4a)–(3.4s):

uhki,j+1 + vhki,j−1 ≥ 1 + yhkij for k ∈ {1,2, . . . , n}. (3.5g)

Proof Fix h, k, i, j . If yhkij = 1, i.e., Shk ≤ Sij < Chk , then we have Shk < Si,j+1

and Chk > Si,j−1. In other words, uhki,j+1 = vhki,j−1 = 1, and so in this case, inequality
(3.5g) holds. Otherwise, we have that either Ci,j−1 ≤ Shk or Chk ≤ Si,j+1, which implies
uhki,j+1 + vhki,j−1 ≥ 1. So in this case as well, inequality (3.5g) holds. �

Author's personal copy

Ann Oper Res

3.2.4 Strengthening the basic AP formulation: nondelay valid inequalities

A feasible schedule is called nondelay if no machine is idle when there exists a job that can
be processed without violating the threshold Qmax on the total power consumption across
all machines.

Theorem 3.9 For Problem 2.2, there always exists an optimal schedule that is nondelay.

Proof Suppose schedule σ1 is an optimal schedule that is not nondelay for Problem 2.2.
Let Cσ1 be the makespan of σ1. Suppose machine i is idle when job j is available to be
processed in schedule σ1. Then we process all the other jobs the same way, and process job
j with the same speed as in schedule σ1, starting at the earliest time after Ci−1,j at which
scheduling job j on machine i does not violate the peak power consumption constraints.
Denote this new schedule as σ2 with makespan Cσ2 . If the completion time of job j on
machine i in σ1 is not the unique value that determines the makespan, then we still have
Cσ2 = Cσ1 . Now suppose j is the only job that attains the makespan Cσ1 in schedule σ1.
Then by processing job j earlier on machine i, we obtain Cσ2 < Cσ1 , which contradicts the
optimality of schedule σ1. �

Based on Theorem 3.9, we can add constraints to the basic AP formulation (3.4a)–(3.4s)
that require schedules to be nondelay. It is difficult to obtain such inequalities for the general
PFSPP problem. However, when the flow shop has two machines, i.e., M = {1,2}, then we
have the following nondelay valid inequalities (3.6a)–(3.6e).

Theorem 3.10 Suppose M = {1,2}. For each j ∈ {2,3, . . . , n}, the following inequalities
are valid for the mixed integer program (3.4a)–(3.4s):

y2k1j + 1 − v1,j−1,2k ≤ u2k1j + u1j2k for k ∈ {1,2, . . . , j − 1}, (3.6a)

y1k2j + 1 − v2,j−1,1k ≤ u1k2j + u2j1k for k ∈ {j + 1, . . . , n}. (3.6b)

Proof Fix j , k. If y2k1j = 1, i.e., S2k ≤ S1j < C2k , and v1,j−1,2k = 0, i.e., C1,j−1 ≤ S2k , then
because there always exists an optimal nondelay schedule, we can start the job in the j th
position on machine 1 simultaneously with the job in the kth position on machine 2, i.e.,
S2k = S1j .

In other words, u2k1j = u1j2k = 1. So in this case the inequality (3.6a) holds. Otherwise, if
y2k1j = 0, because u2k1j + u1j2k ≥ 1 and v1,j−1,2k ≥ 0, the inequality (3.6a) also holds.

Reversing the roles of machines 1 and 2, we similarly obtain valid inequalities (3.6b). �

Theorem 3.11 Suppose M = {1,2}. The following inequalities are valid for the mixed in-
teger program (3.4a)–(3.4s):

y1k21 ≤ u211k for k ∈ {2,3, . . . , n}. (3.6c)

Proof Fix k. If y1k21 = 1, i.e. S1k ≤ S21 < C1k , then we can start the job in the first position
on machine 2 simultaneously with the job in the kth position on machine 1, that is S1k = S21.

Author's personal copy

Ann Oper Res

In other words, u211k = 1, and so inequality (3.6c) holds. �

Theorem 3.12 Suppose M = {1,2}. For each j ∈ {2,3, . . . , n}, the following inequalities
are valid for the mixed integer program (3.4a)–(3.4s):

S1j − C1,j−1 ≤ (S1j − C1,j−1)(2 − v1,j−1,2k − y2k1j) for k ∈ {1,2, . . . , j − 2},
(3.6d)

S2j − C2,j−1 ≤ (S2j − C2,j−1)(2 − v2,j−1,1k − y1k2j) for k ∈ {j + 1, . . . , n}. (3.6e)

Proof Fix j , k. Suppose y2k1j = 1 and v1,j−1,2k = 1, i.e., S2k ≤ S1j < C2k and C1,j−1 > S2k .

Then because there always exists an optimal nondelay schedule, we can process the job
in the j th position immediately after the completion time of the job in the (j − 1)th position
on machine 1; that is, S1j = C1,j−1. So the inequality (3.6d) holds. Now suppose y2k1j and
v1,j−1,2k are not both equal to 1. Then the right side is at least S1j − C1,j−1, and so the
inequality (3.6d) still holds.

Reversing the roles of machines 1 and 2, we similarly obtain valid inequalities (3.6e). �

We call the formulation that combines the basic AP formulation with the concurrent job
valid inequalities (3.5a)–(3.5g) (and the nondelay valid inequalities (3.6) when M = {1,2})
the enhanced AP formulation.

3.3 Experimental study

3.3.1 Computational environment

In this section, we compare the performance of the different formulations presented in
Sect. 3.1 and Sect. 3.2, with respect to both computation time and solution quality. We used
Gurobi Optimizer 4.5 to solve the mixed integer programs on a computer with two 2.5 GHz
Quad-Core AMD 2380 processors and 32 GB of RAM running the Linux operating system.

To conduct our experiments, we considered a hypothetical flow shop scheduling problem
arising from the manufacture cast iron plates with slots (Fig. 2). The plates manufactured
in this flow shop can have three different lengths, two different depths of milling on the
surface, three different numbers of slots, and two different depths of slots. In other words,
there are 3 × 2 × 3 × 2 = 36 different types of plates. There are two types of machines
with different operations: face milling and profile milling. We consider two different cases:
in the first case, each plate must have the two operations on one side; in the second case,
each plate must have the two operations on two sides. We can view these two different
cases as two different flow shop problems with 2 and 4 machines, respectively; that is,
M = {1,2} or M = {1,2,3,4}. There are five available cutting speeds on each machine;
that is, d = 5 and S = {s1, s2, s3, s4, s5}. We also consider a special case in which we can
only use each machine’s minimum and maximum speeds; that is, d = 2 and S = {s1, s2}. The

Author's personal copy

Ann Oper Res

Fig. 2 Cast iron plates with slots

processing times pijs and power consumption values qijs are generated in accordance with
the Machinery’s Handbook (Oberg et al. 2008). In the instances we study, the processing
times pijs are in the interval [4,22] (in minutes), and the power consumption values qijs are
in the interval [4,9] (in kW). For this study, we consider instances in which the number of
jobs n is 8, 12, 16, or 20.

We generate 10 different settings for each combination of (m,n, d), by randomly sam-
pling n jobs with replacement from the 36 job types. Let (m,n, d, k) denote the kth setting
that has m machines, n jobs and d speeds. In summary, the family of settings we use in our
experiment is

{
(2, n,2, k), (2, n,5, k), (4, n,2, k) : n ∈ {8,12,16,20}, k ∈ {1,2, . . . ,10}}.

For each setting (m,n, d, k), we define Q = maxi∈M,j∈J {qij1} and Q =∑
i∈M maxj∈J {qijd}. Note that when Qmax < Q, there is no feasible schedule, and when

Qmax > Q, all jobs can be processed concurrently at their maximum speed. We call [Q,Q]
the power consumption range for each instance, which we divide into 9 subintervals with
same length. For each setting (m,n, d, k), we solve the corresponding mixed integer pro-
gram using the 10 endpoints of these subintervals as the threshold Qmax on the total power
consumption at any time instant. This way, for each combination of m, n and d , we will
test 10 settings with 10 different peak power consumption thresholds, or 100 instances of
the problem. We set a 30 minute time limit on each instance. For each instance, we provide
Gurobi Optimizer with an upper bound on the optimal makespan, using the best solution
obtained from the two heuristic algorithms described next.

3.3.2 Two heuristic algorithms for finding feasible schedules

For an instance (m,n, d, k) with threshold Qmax on the peak power consumption, let s∗
ij

be the maximum possible speed at which job j can be processed on machine i individu-
ally without violating the power consumption threshold; i.e., s∗

ij = max{s ∈ S : qijs ≤ Qmax}.
Suppose we fix a permutation of the job set. Then one straightforward algorithm (Algo-
rithm 3.1) for finding a feasible schedule is to process each job j on machine i at speed s∗

ij

without overlap—that is, with no other concurrently running jobs.
For example, when Algorithm 3.1 is applied to a two-machine flow shop, in which each

job is processed with its maximum possible speed without overlap, the Gantt chart of the
resulting schedule looks like this:

Author's personal copy

Ann Oper Res

Algorithm 3.1 Maximum possible speed, fix permutation, no overlap
1: Given pijs, qijs for i ∈ M, j ∈ J , s ∈ S , permutation (1, . . . , n) of J
2: for j = 1 to n do
3: for i = 1 to m do
4: calculate s∗

ij

5: schedule job j on machine i with s∗
ij without overlap

6: end for
7: end for

Algorithm 3.2 Minimum possible speed, fix permutation, as early as possible
1: Given pijs, qijs for i ∈ M, j ∈ J , s ∈ S , permutation (1, . . . , n) of J
2: for j = 1 to n do
3: for i = 1 to m do
4: schedule job j on machine i at its earliest possible time T̃ [l]
5: while power consumption constraints are violated do
6: l = l + 1
7: schedule j on machine i at the next available time T̃ [l]
8: end while
9: update T̃

10: end for
11: end for

Another simple method to generate feasible solutions is to process jobs as early as possi-
ble at their minimum possible speeds, while respecting the power consumption constraints
(Algorithm 3.2). As mentioned above (e.g., Example 3.1), we only need to keep track of the
jobs that are running concurrently at start or completion times. Let T̃ be the sorted list of all
the start and completion times of jobs, and let T̃ [i] be the ith component in T̃ .

For example, suppose that the following is a Gantt chart for the schedule we obtain using
Algorithm 3.2 for the first 3 jobs of a two-machine instance:

Here, T̃ = {t1, . . . , t7}. Next, Algorithm 3.2 attempts to schedule job 4 on machine 1 at
its earliest possible time t4. If the power consumption threshold is violated when job 4 is
processed on machine 1 at time t4, then the algorithm tries to schedule job 4 on machine 1 at
the next possible time t5. If the power consumption threshold is satisfied, then the algorithm
schedules job 4 on machine 1 at t5 and updates the list of times T̃ .

The primary role of the two heuristic algorithms described above in our study is to
quickly obtain an upper bound on the optimal makespan for use in Gurobi’s branch-and-cut
procedure. Unfortunately, in our computational results, we found that these upper bounds
often are quite loose, since they only consider processing the jobs at the minimum and max-
imum speeds available. When jobs can be processed at a variety of speeds, the schedules
found by the heuristic algorithms usually do not compare well to optimal schedules.

Author's personal copy

Ann Oper Res

Fig. 3 Trade-off between
makespan and peak power
consumption

Fig. 4 Relationship between
running time and peak power
consumption

3.3.3 Experiment 1: makespan (Cmax) vs. power consumption (Qmax)

From Assumption 2.1, we know that when a job is processed at a higher speed, its process-
ing time decreases, while its power consumption increases. Based on this assumption, one
expects a significant trade-off between makespan and peak power consumption. To achieve
the shortest possible makespan, jobs should be processed at their highest possible speeds si-
multaneously without idle time, which leads to high peak power consumption. On the other
hand, if the objective is to minimize peak power consumption, jobs should be processed at
their lowest speeds and the machines should be operated without overlap. Figure 3 shows
an example of the relationship between makespan and power consumption for a setting with
m = 2, n = 8, and d = 2.

We also observe that the running times of all the formulations are considerably higher for
instances with intermediate values of Qmax. Figure 4 shows an example of the relationship
between Qmax and running time for the same setting with m = 2, n = 8 and d = 2, using the
enhanced AP formulation. This seems correct, intuitively: for extreme values of Qmax, the
optimal schedule is relatively straightforward to compute, whereas for intermediate values
of Qmax, the scheduling (in particular, deciding the processing speeds) is trickier.

As we will see in the subsequent subsections, this pattern is prevalent. Since the running
times of the formulations appear to be related to the value of Qmax, we divide the power
consumption range into 3 classes. For an instance with power consumption range [Q,Q],
if Qmax is less than the first quartile of [Q,Q], then we call Qmax “low”; when Qmax is

Author's personal copy

Ann Oper Res

Table 1 Comparison of average running time between disjunctive and basic AP formulations

m d Qmax range Formulation Average running time (s)

n = 4 n = 5 n = 6 n = 7 n = 8

2 2 low disjunctive 0.07 0.78 11.81 280.60 NA

basic AP 0.05 0.15 0.45 0.85 1.12

intermediate disjunctive 0.12 0.51 5.87 127.80 NA

basic AP 0.18 0.31 2.09 17.96 NA

high disjunctive 0.09 0.16 0.49 2.83 24.79

basic AP 0.07 0.06 0.11 0.28 0.62

NA: not all instances solved within the time limit

greater than the third quartile of [Q,Q], then we call Qmax “high”; otherwise, we call Qmax

“intermediate.” In the following experiments, we will analyze the performance of the mixed
integer programs with respect to different classes of Qmax.

3.3.4 Experiment 2: disjunctive vs. basic AP formulation

In order to compare the performance of the different formulations, we use the following
measures to assess their performance:

• The number of instances solved to optimality within the 30 minute time limit.
• The average and maximum solution time for these instances solved to optimality.
• The average and maximum speedup factor of the running time for these instances solved

to optimality. For any two formulations a and b, we define the speedup factor (SF) be-
tween a and b for a given instance as the ratio between the times taken for a and b to
solve the instance. We only compute a speedup factor when both formulations can solve
the instances to optimality within the predetermined time limit.

• The average optimality gap at various time points within the 30 minute time limit. We
define the optimality gap as the ratio of the value of the best known feasible solution
to the best known lower bound. This measure lets us compare the performance of the
different formulations for the instances that do not solve to optimality within the time
limit.

These performance measures were also used by Keha et al. (2009) and Unlu and Mason
(2010) in their study of mixed integer programming formulations for various scheduling
problems.

In this experiment, we compare the performance of the disjunctive and basic AP for-
mulations. We look at a family of instances similarly constructed to the one described in
Sect. 3.3.1, except that we look at settings with m = 2, n ∈ {4,5,6,7,8}, and d = 2. We
focus on these smaller instances in this experiment because as we see in Table 1, the dis-
junctive formulation for even moderately sized instances (e.g., n = 8) fails to solve within
the 30 minute time limit. Table 1 shows the average running time for the disjunctive and ba-
sic AP formulations, and Table 2 shows the average speedup factor between the disjunctive
and basic AP formulations.

From Tables 1 and 2, we can see that the basic AP formulation runs much faster than
the disjunctive formulation, especially for instances with larger numbers of jobs. Figure 5

Author's personal copy

Ann Oper Res

Table 2 Speedup factor between disjunctive and basic AP formulations

m d Qmax range Average speedup factor

n = 4 n = 5 n = 6 n = 7 n = 8

2 2 low 1.43 3.63 33.95 346.00 NA

intermediate 0.76 2.85 16.00 138.00 NA

high 2.57 4.03 4.95 12.03 52.27

NA: not all instances solved within the time limit

Fig. 5 Average speedup factors between the disjunctive and basic AP formulations

graphically shows the average speedup factor between the disjunctive and basic AP for-
mulations. Given these observations, we decided to devote more attention to strengthened
versions of the basic AP formulation.

3.3.5 Experiment 3: basic AP formulation vs. enhanced AP formulation

We proposed the concurrent valid inequalities for basic AP formulation in Sect. 3.2.3, and
the nondelay valid inequalities when m = 2 in Sect. 3.2.4. We expect that the addition of
these inequalities in the enhanced AP formulation will result in better computational results
than the basic AP formulation. As mentioned in Sect. 3.3.1, we consider instances with 2
machines and 4 machines.

Table 3 displays the size of the basic and the enhanced AP formulations for an instance
with m = 2 and d = 2. The enhanced AP formulation has the same number of variables
as the basic AP formulation, but the enhanced AP formulation has more constraints and
nonzeros than the basic AP formulation, since the concurrent job valid inequalities (and
nondelay valid inequalities when m = 2) are also included.

Table 5 shows the computational results for the instances solved to optimality with low or
high values of Qmax. From this table, we see that the number of instances solved in the basic
AP formulation is about the same as the enhanced AP formulation, except for instances with
m = 4, n = 12, and d = 2, for which only one of the instances was solved to optimality using
the basic AP formulation while 3 instances were solved using the enhanced AP formulation.
We also see that the average speedup factor in many cases is less than 1, meaning that

Author's personal copy

Ann Oper Res

Table 3 Initial sizes of the basic and the enhanced AP formulations

n AP formulation # of variables # of constraints # of nonzeros

8 basic 2721 2874 12001

enhanced 2721 4204 18427

12 basic 8401 8726 36237

enhanced 8401 11776 54415

16 basic 19009 19570 80825

enhanced 19009 25044 119523

20
basic 36081 36942 151909

enhanced 36081 45544 222199

the basic AP formulation solved faster on average than the enhanced AP formulation. This
observation might be explained by the low and high Qmax: in Sect. 3.3.3 we observed that
the instances with low or high values of Qmax are “easy.” Given this, one might expect that
the running times of these formulations for these instances are mainly based on the size of
the formulations, not the scheduling decisions.

Table 4 shows the computational results for the instances with intermediate values of
Qmax. From this table, we see that in most cases, the average speedup factor is larger than 1.
In other words, for these instances with intermediate values of Qmax, the additional valid
inequalities in the enhanced AP formulation help in reducing running times.

When analyzing the data in more detail, we found more evidence that the additional
valid inequalities are effective in reducing running times for instances with intermediate
Qmax. Table 6 shows the computational results for instances with intermediate values of
Qmax in which m = 2, n = 8, and d = 2. From Table 6, we see that for most instances, the
enhanced AP formulation runs faster than the basic AP formulation (i.e. 53 out of 60). On
the other hand, for instances in which the basic AP formulation is faster, we see that the
average running times for both formulations are much smaller (less than 2 seconds).

These observations suggest something similar to what we observed with the data in Ta-
ble 5. When the problem is easy to solve, the size of formulation is the main factor in the
running time, implying that the basic AP formulation should be faster. Otherwise, when
the problem is more difficult, the valid inequalities added in the enhanced AP formulation
significantly reduce the running time.

We also observed that the majority of instances, especially those with larger m,n, and d ,
did not solve within 30 minutes, even using the enhanced AP formulation. Tables 7, 8 and 9
show the optimality gap at various times for those instances with both AP formulations
within the 30 minute time limit. From Tables 7, 8 and 9, we see that the valid inequalities
help in reducing the optimality gap of the mixed integer program at various time points in
the solution process (especially at the later times). In addition, we see that as the number of
jobs increases, the solution quality decreases at any given time, since the increased number
of jobs adds to the difficulty of scheduling jobs.

4 Two machines, discrete speeds, and zero intermediate storage

Recall that in Problem 2.3, we are given a discrete speed set S = {s1, . . . , sd} and a set of
two machines M = {1,2}, and there is zero intermediate storage in the flow shop. We will
show that this variant of the PFSPP problem can be transformed into an instance of the

Author's personal copy

Ann Oper Res

Ta
bl

e
4

R
es

ul
ts

fo
r

so
lv

ed
in

st
an

ce
s

w
ith

in
te

rm
ed

ia
te

Q
m

ax

In
st

an
ce

ty
pe

B
as

ic
A

P
E

nh
an

ce
d

A
P

A
vg

SF
M

ax
SF

m
d

Q
m

ax
ra

ng
e

#
of

in
st

an
ce

s
n

#
so

lv
ed

A
vg

tim
e

M
ax

tim
e

#
so

lv
ed

A
vg

tim
e

M
ax

tim
e

2
2

in
te

rm
ed

ia
te

60
8

59
44

2.
99

16
82

.5
1

60
12

1.
41

53
3.

91
4.

06
8.

66

12
9

10
3.

63
49

7.
80

9
66

.1
6

21
0.

29
1.

87
7.

66

16
8

20
4.

69
11

72
.9

5
9

30
4.

31
14

52
.1

2
1.

57
7.

34

20
8

35
5.

16
88

9.
05

7
44

0.
15

13
11

.6
7

0.
81

1.
74

2
5

in
te

rm
ed

ia
te

60
8

38
27

0.
23

13
53

.9
7

60
39

0.
02

15
91

.2
6

2.
11

6.
90

12
17

10
7.

08
22

6.
56

18
20

7.
02

13
07

.4
6

0.
75

1.
57

16
16

32
9.

35
16

97
.9

8
16

37
3.

06
13

14
.9

0
0.

83
1.

64

20
5

60
2.

92
80

0.
10

5
81

0.
61

16
29

.2
8

1.
07

2.
28

4
2

in
te

rm
ed

ia
te

60
8

6
55

0.
60

85
1.

57
9

81
1.

42
16

60
.0

0
1.

17
1.

73

12
0

–
–

0
–

–
–

–

16
0

–
–

0
–

–
–

–

20
0

–
–

0
–

–
–

–

Author's personal copy

Ann Oper Res

Ta
bl

e
5

R
es

ul
ts

fo
r

so
lv

ed
in

st
an

ce
s

w
ith

lo
w

or
hi

gh
Q

m
ax

In
st

an
ce

ty
pe

B
as

ic
A

P
E

nh
an

ce
d

A
P

A
vg

SF
M

ax
SF

m
d

Q
m

ax
ra

ng
e

#
of

in
st

an
ce

s
n

#
so

lv
ed

A
vg

tim
e

M
ax

tim
e

#
so

lv
ed

A
vg

tim
e

M
ax

tim
e

2
2

lo
w

20
8

20
1.

10
1.

77
20

1.
53

2.
90

0.
81

1.
62

12
20

10
9.

70
20

8.
30

20
54

.6
7

88
.6

4
1.

96
3.

68

16
0

–
–

0
–

–
–

–

20
0

–
–

0
–

–
–

–

hi
gh

20
8

20
74

.8
1

76
3.

14
20

25
.2

5
30

0.
69

0.
93

4.
63

12
19

29
.9

8
22

3.
78

19
48

.9
0

40
9.

30
0.

60
2.

98

16
18

11
8.

32
13

34
.6

3
18

13
4.

24
79

2.
74

0.
51

1.
68

20
18

18
1.

11
12

00
.9

2
17

29
7.

88
13

13
.0

1
0.

53
3.

34

2
5

lo
w

20
8

20
1.

64
2.

50
20

2.
00

3.
89

0.
89

1.
70

12
20

16
0.

55
20

5.
62

20
11

2.
15

38
6.

55
1.

67
2.

77

16
0

–
–

0
–

–
–

–

20
0

–
–

0
–

–
–

–

hi
gh

20
8

20
1.

58
11

.2
0

20
1.

76
3.

51
0.

83
3.

19

12
20

8.
71

59
.6

2
20

24
.0

5
55

.9
7

0.
41

1.
07

16
20

19
.5

6
81

.0
0

20
80

.7
4

21
3.

36
0.

40
1.

78

20
20

99
.7

9
51

4.
15

20
24

9.
40

72
3.

71
0.

56
4.

10

4
2

lo
w

20
8

0
–

–
0

–
–

–
–

12
0

–
–

0
–

–
–

–

16
0

–
–

0
–

–
–

–

20
0

–
–

0
–

–
–

–

hi
gh

20
8

19
40

6.
58

11
09

.0
0

19
49

9.
11

11
51

.8
9

1.
02

4.
44

12
1

14
90

.8
2

14
90

.8
2

3
14

25
.8

7
15

32
.5

9
1.

20
1.

37

16
0

–
–

0
–

–
–

–

20
0

–
–

0
–

–
–

–

Author's personal copy

Ann Oper Res

Table 6 Results for instances with intermediate values of Qmax and m = 2, n = 8, d = 2

Result type # of
instances

Formulation Avg time Max time Avg SF Max SF

Enhanced AP is
faster

53 basic AP 527.00 1800.00 4.54 8.66

enhanced AP 137.23 533.90

Basic AP is faster 7 basic AP 0.76 1.54 0.46 0.82

enhanced AP 1.57 2.23

asymmetric traveling salesperson problem (TSP). Recall that in the asymmetric TSP, we are
given a complete directed graph and arc distances, and the task is to find a shortest tour in the
graph. This transformation is inspired by a similar transformation of the classic permutation
flow shop problem with zero intermediate storage by Reddi and Ramamoorthy (1972).

Before we describe this transformation, we need to establish the notion of a “block” in a
schedule for a flow shop with no intermediate storage. Consider the following example.

Example 4.1 In a two machine flow shop with zero intermediate storage, suppose job r ,
j , k, l are processed successively in a schedule. For example, consider the following Gantt
chart.

Note that in this example, because there is zero intermediate storage, job k cannot leave
machine 1 until job j is completed on machine 2, and so job l cannot be started on machine
1 until the completion time of job j . We can view any feasible schedule for Problem 2.3 as
the combination of n+ 1 blocks: a block (j, k) is a subsequence such that job j is processed
on machine 2, and job k is processed on machine 1. We can process each block with overlap
(e.g. block (j, k) in the Gantt chart above), or without overlap (e.g. block (r, j)). Moreover,
when the permutation of the jobs is fixed, we only need to minimize the total processing
time of each block in order to find an optimal schedule.

For any feasible schedule, we define the following quantities. Let p(j, k) denote the min-
imum total processing time of block (j, k). Let p1(j, k) be the minimum total processing
time of block (j, k) when it is processed without overlap while respecting the power con-
sumption threshold, and let p2(j, k) be the minimum total processing time of block (j, k)

when jobs j and k are processed with overlap while respecting the power consumption
threshold. Recall that s∗

ij is the maximum speed at which job j can be processed on machine
i individually without violating the power consumption threshold. Then, it is straightforward
to see that the following holds.

Lemma 4.2

(a) There exists an optimal schedule for Problem 2.3 such that for each block (j, k) of
jobs, we have that p1(j, k) = p2js∗

2j
+ p1ks∗

1k
and p2(j, k) = min{max{p2js2j

, p1ks1k
} :

q2js2j
+ q1ks1k

≤ Qmax, s2j ∈ S, s1k ∈ S}.

Author's personal copy

Ann Oper Res

Ta
bl

e
7

A
ve

ra
ge

op
tim

al
ity

ga
p

fo
r

in
st

an
ce

s
w

ith
m

=
2,

d
=

2

In
st

an
ce

ty
pe

A
P

fo
rm

ul
at

io
ns

A
ve

ra
ge

op
tim

al
ity

ga
p

at
tim

e
t

(s
)

m
d

Q
m

ax
ra

ng
e

n
5

10
30

60
15

0
30

0
60

0
12

00
18

00

2
2

lo
w

8
ba

si
c

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

en
ha

nc
ed

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

12
ba

si
c

1.
39

1.
31

1.
24

1.
12

1.
02

1.
00

1.
00

1.
00

1.
00

en
ha

nc
ed

1.
38

1.
28

1.
17

1.
04

1.
00

1.
00

1.
00

1.
00

1.
00

16
ba

si
c

1.
61

1.
56

1.
48

1.
47

1.
41

1.
36

1.
31

1.
27

1.
24

en
ha

nc
ed

1.
60

1.
54

1.
46

1.
43

1.
36

1.
31

1.
27

1.
22

1.
20

20
ba

si
c

1.
65

1.
63

1.
60

1.
57

1.
55

1.
53

1.
50

1.
47

1.
46

en
ha

nc
ed

1.
65

1.
63

1.
59

1.
56

1.
53

1.
50

1.
47

1.
44

1.
43

in
te

rm
ed

ia
te

8
ba

si
c

1.
38

1.
34

1.
25

1.
19

1.
11

1.
06

1.
02

1.
01

1.
00

en
ha

nc
ed

1.
32

1.
25

1.
13

1.
08

1.
03

1.
01

1.
00

1.
00

1.
00

12
ba

si
c

1.
55

1.
46

1.
43

1.
40

1.
36

1.
34

1.
30

1.
28

1.
27

en
ha

nc
ed

1.
64

1.
47

1.
41

1.
36

1.
31

1.
28

1.
25

1.
21

1.
20

16
ba

si
c

1.
66

1.
65

1.
50

1.
48

1.
43

1.
40

1.
38

1.
37

1.
37

en
ha

nc
ed

1.
68

1.
67

1.
51

1.
50

1.
42

1.
38

1.
36

1.
34

1.
33

20
ba

si
c

1.
70

1.
70

1.
67

1.
52

1.
49

1.
45

1.
43

1.
41

1.
40

en
ha

nc
ed

1.
70

1.
70

1.
70

1.
59

1.
54

1.
45

1.
42

1.
40

1.
39

hi
gh

8
ba

si
c

1.
03

1.
02

1.
01

1.
01

1.
01

1.
01

1.
01

1.
00

1.
00

en
ha

nc
ed

1.
02

1.
02

1.
01

1.
01

1.
00

1.
00

1.
00

1.
00

1.
00

12
ba

si
c

1.
08

1.
06

1.
03

1.
02

1.
02

1.
01

1.
01

1.
01

1.
01

en
ha

nc
ed

1.
30

1.
09

1.
06

1.
02

1.
02

1.
01

1.
01

1.
01

1.
01

16
ba

si
c

1.
40

1.
28

1.
09

1.
05

1.
02

1.
02

1.
02

1.
01

1.
01

en
ha

nc
ed

1.
64

1.
54

1.
19

1.
45

1.
03

1.
02

1.
01

1.
01

1.
01

20
ba

si
c

1.
69

1.
62

1.
29

1.
11

1.
05

1.
02

1.
01

1.
01

1.
00

en
ha

nc
ed

1.
72

1.
72

1.
65

1.
33

1.
19

1.
03

1.
01

1.
01

1.
00

Author's personal copy

Ann Oper Res

Ta
bl

e
8

A
ve

ra
ge

op
tim

al
ity

ga
p

fo
r

in
st

an
ce

s
w

ith
m

=
2,

d
=

5

In
st

an
ce

ty
pe

A
P

fo
rm

ul
at

io
ns

A
ve

ra
ge

op
tim

al
ity

ga
p

at
tim

e
t

(s
)

m
d

Q
m

ax
ra

ng
e

n
5

10
30

60
15

0
30

0
60

0
12

00
18

00

2
5

lo
w

8
ba

si
c

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

en
ha

nc
ed

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

12
ba

si
c

1.
51

1.
40

1.
35

1.
26

1.
08

1.
00

1.
00

1.
00

1.
00

en
ha

nc
ed

1.
58

1.
41

1.
30

1.
19

1.
02

1.
01

1.
00

1.
00

1.
00

16
ba

si
c

1.
74

1.
70

1.
59

1.
56

1.
51

1.
45

1.
40

1.
36

1.
34

en
ha

nc
ed

1.
77

1.
73

1.
57

1.
53

1.
47

1.
41

1.
36

1.
31

1.
29

20
ba

si
c

1.
77

1.
76

1.
73

1.
69

1.
66

1.
62

1.
58

1.
55

1.
53

en
ha

nc
ed

1.
78

1.
78

1.
71

1.
66

1.
63

1.
59

1.
55

1.
51

1.
50

in
te

rm
ed

ia
te

8
ba

si
c

1.
38

1.
36

1.
24

1.
20

1.
15

1.
11

1.
07

1.
05

1.
04

en
ha

nc
ed

1.
39

1.
35

1.
20

1.
14

1.
08

1.
06

1.
03

1.
00

1.
00

12
ba

si
c

1.
80

1.
64

1.
48

1.
44

1.
36

1.
33

1.
30

1.
27

1.
25

en
ha

nc
ed

1.
81

1.
78

1.
46

1.
41

1.
31

1.
27

1.
25

1.
22

1.
20

16
ba

si
c

1.
81

1.
81

1.
65

1.
48

1.
46

1.
39

1.
36

1.
34

1.
33

en
ha

nc
ed

1.
81

1.
81

1.
80

1.
62

1.
46

1.
36

1.
32

1.
29

1.
28

20
ba

si
c

N
A

1.
84

1.
84

1.
82

1.
54

1.
53

1.
49

1.
43

1.
42

en
ha

nc
ed

N
A

1.
85

1.
84

1.
83

1.
71

1.
51

1.
45

1.
40

1.
39

hi
gh

8
ba

si
c

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

en
ha

nc
ed

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

12
ba

si
c

1.
37

1.
07

1.
01

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

en
ha

nc
ed

1.
81

1.
47

1.
03

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

16
ba

si
c

1.
77

1.
36

1.
03

1.
01

1.
00

1.
00

1.
00

1.
00

1.
00

en
ha

nc
ed

1.
81

1.
81

1.
60

1.
08

1.
00

1.
00

1.
00

1.
00

1.
00

20
ba

si
c

N
A

1.
84

1.
54

1.
17

1.
03

1.
01

1.
00

1.
00

1.
00

en
ha

nc
ed

N
A

1.
84

1.
84

1.
80

1.
10

1.
03

1.
00

1.
00

1.
00

N
A

:f
or

th
es

e
in

st
an

ce
s,

th
e

ro
ot

L
P

re
la

xa
tio

ns
of

th
e

fo
rm

ul
at

io
ns

di
d

no
ts

ol
ve

in
le

ss
th

an
5

s

Author's personal copy

Ann Oper Res

Ta
bl

e
9

A
ve

ra
ge

op
tim

al
ity

ga
p

fo
r

in
st

an
ce

s
w

ith
m

=
4,

d
=

2

In
st

an
ce

ty
pe

A
P

fo
rm

ul
at

io
ns

A
ve

ra
ge

op
tim

al
ity

ga
p

at
tim

e
t

(s
)

m
d

Q
m

ax
ra

ng
e

n
5

10
30

60
15

0
30

0
60

0
12

00
18

00

4
2

lo
w

8
ba

si
c

2.
53

2.
43

2.
27

2.
23

2.
15

2.
10

2.
03

1.
99

1.
96

en
ha

nc
ed

2.
50

2.
40

2.
26

2.
22

2.
12

2.
07

2.
03

1.
96

1.
94

12
ba

si
c

2.
78

2.
75

2.
72

2.
64

2.
56

2.
52

2.
47

2.
43

2.
41

en
ha

nc
ed

N
A

2.
78

2.
66

2.
64

2.
58

2.
53

2.
47

2.
43

2.
41

16
ba

si
c

N
A

3.
02

2.
93

2.
92

2.
88

2.
83

2.
81

2.
75

2.
73

en
ha

nc
ed

N
A

3.
02

2.
96

2.
89

2.
87

2.
83

2.
79

2.
73

2.
71

20
ba

si
c

N
A

3.
08

3.
04

3.
03

3.
00

2.
98

2.
95

2.
92

2.
91

en
ha

nc
ed

N
A

3.
08

3.
05

3.
03

2.
98

2.
96

2.
94

2.
91

2.
89

in
te

rm
ed

ia
te

8
ba

si
c

2.
76

2.
73

2.
11

2.
06

1.
86

1.
65

1.
57

1.
54

1.
51

en
ha

nc
ed

2.
76

2.
76

1.
89

1.
86

1.
64

1.
56

1.
51

1.
48

1.
46

12
ba

si
c

N
A

3.
01

3.
01

3.
00

2.
52

2.
51

2.
33

2.
04

1.
98

en
ha

nc
ed

N
A

3.
01

3.
00

2.
93

2.
34

2.
32

2.
01

1.
89

1.
84

16
ba

si
c

N
A

3.
09

3.
09

3.
09

3.
09

3.
00

2.
74

2.
73

2.
70

en
ha

nc
ed

N
A

3.
09

3.
09

3.
09

3.
08

2.
67

2.
58

2.
40

2.
20

20
ba

si
c

N
A

3.
17

3.
17

3.
17

3.
17

3.
17

3.
17

2.
98

2.
88

en
ha

nc
ed

N
A

3.
17

3.
17

3.
17

3.
17

3.
17

3.
16

2.
99

2.
88

hi
gh

8
ba

si
c

2.
76

2.
67

1.
79

1.
74

1.
48

1.
12

1.
01

1.
00

1.
00

en
ha

nc
ed

2.
76

2.
75

1.
61

1.
49

1.
19

1.
06

1.
02

1.
00

1.
00

12
ba

si
c

N
A

3.
01

3.
01

2.
94

2.
18

2.
18

1.
59

1.
24

1.
20

en
ha

nc
ed

N
A

3.
01

3.
00

2.
97

1.
94

1.
71

1.
17

1.
08

1.
06

16
ba

si
c

N
A

3.
09

3.
09

3.
09

3.
09

2.
91

2.
64

2.
63

2.
48

en
ha

nc
ed

N
A

3.
09

3.
09

3.
09

3.
09

2.
31

1.
78

1.
40

1.
25

20
ba

si
c

N
A

3.
17

3.
17

3.
17

3.
17

3.
17

3.
17

3.
00

2.
81

en
ha

nc
ed

N
A

3.
17

3.
17

3.
17

3.
17

3.
17

3.
13

2.
67

2.
19

N
A

:f
or

th
es

e
in

st
an

ce
s,

th
e

ro
ot

L
P

re
la

xa
tio

ns
of

th
e

fo
rm

ul
at

io
ns

di
d

no
ts

ol
ve

in
le

ss
th

an
5

s

Author's personal copy

Ann Oper Res

(b) There exists an optimal schedule for Problem 2.3 such that for each block (j, k) of jobs,
the total processing time p(j, k) = min{p1(j, k),p2(j, k)}.

Note that p(j, k) is not necessarily equal to p(k, j). Using the above lemma, we obtain
the following result.

Theorem 4.3 Problem 2.3 can be viewed as an instance of the asymmetric traveling sales-
person problem.

Proof For convenience, we introduce a new job 0 with p10 = p20 = 0, and define p(0, j) =
p1js∗

1j
and p(j,0) = p2js∗

2j
for j = 1, . . . , n. Denote j0 = jn+1 = 0. Then the makespan of

schedule (j1, j2, . . . , jn) is equal to
∑n

i=0 p(ji, ji+1). We construct a complete graph G =
(V ,E) in which V = {0,1, . . . , n}. We define the distance from node j to k as Djk = p(j, k)

for j, k ∈ {0, . . . , n} such that j �= k, and Djj = +∞ for j = 0, . . . , n. Then Problem 2.3 is
equivalent to finding the shortest tour in G with arc distances D. �

5 Two machines, continuous speeds, and zero intermediate storage

In this section we will consider Problem 2.4, in which the flow shop has two machines with
zero intermediate storage, each machine can process jobs at any speed within a continuous
interval, and the power consumption of a machine processing a job at speed s is sα for
some constant α > 1. Given Qmax as the threshold for peak power consumption, we define
smax = (Qmax)

1
α , and let the speed set S be the continuous interval [0, smax]. Recall that pij

is the work required for job j on machine i, sij ∈ [0, smax] is the chosen speed to process job
j on machine i, and pij /sij is the processing time of job j on machine i.

5.1 Arbitrary work requirements across machines

Lemma 5.1 In any optimal schedule for Problem 2.4, if job j immediately precedes job k,
then sα

1k +sα
2j = Qmax = sα

max. Moreover, each block (j, k) with j �= 0 and k �= 0 in an optimal
schedule is processed with overlap, and C2j = C1k .

Proof Note that at any time, the total power consumption of the two machines must be
exactly Qmax; otherwise we can increase the speeds of the jobs on the two machines so that
the total power consumption is Qmax, and decrease the makespan.

Consider a block (j, k) with j �= 0 and k �= 0 in an optimal schedule. If block (j, k) is
processed without overlap in the optimal schedule, then job j and k must be processed at the
maximum speed smax. That is, the minimum total processing time for block (j, k) without
overlap is p1(j, k) = p2j +p1k

(Qmax)
1
α

.

If block (j, k) is processed with overlap in the optimal schedule, then it must be nondelay;
otherwise we can process the delayed job (job k) earlier with the same speed as follows:

Author's personal copy

Ann Oper Res

This way, we can decrease the makespan without violating the power consumption con-
straints. As a result, when block (j, k) is processed with overlap, then job j on machine
2 and job k on machine 1 must be processed at the same start time. Moreover, we also
have C2j = C1k . Otherwise, without loss of generality, suppose that C2j > C1k . Then we can
decrease the speed of job k and increase the speed of job j until C2j = C1k .

This way, the total processing time of block (j, k) decreases, and so the makespan also
decreases. Therefore for any block (j, k) with overlap, we have

p2j

s2j
= p1k

s1k
= p2(j, k). Be-

cause sα
2j + sα

1k = Qmax, we obtain that p2(j, k) = (pα
1k

+pα
2j

)
1
α

(Qmax)
1
α

. Since p1(j, k) > p2(j, k) for

any α > 1, so we have p(j, k) = p2(j, k). �

Define Djk = (pα
1k +pα

2j)
1
α for j, k ∈ {0, . . . , n} such that j �= k. Since p(j, k) = Djk

(Qmax)
1
α

for all j, k ∈ {0, . . . , n} such that j �= k, our problem is equivalent to finding a permutation
(j1, . . . , jn) of the jobs that minimizes

∑n

i=0 Dji,ji+1 . Similar to the proof in Theorem 4.3, if
we interpret Djk as the distance of the arc from node j to node k in a complete directed graph
on {0,1, . . . , n}, and define Djj = +∞ for j = 0, . . . , n, then this variant of the PFSPP
problem is also a special case of the asymmetric TSP.

5.2 Consistent work requirements across machines

Although the asymmetric TSP is an NP-hard problem, many of its special cases can be
solved efficiently in polynomial time. One such special case is when the arc distances satisfy
the so-called Demidenko conditions, which state that the matrix D ∈ R

(n+1)×(n+1) of arc
distances satisfies the following conditions: for all i, j, l ∈ {0,1, . . . , n} such that i < j <

j + 1 < l, we have

Dij + Dj,j+1 + Dj+1,l ≤ Di,j+1 + Dj+1,j + Djl, (5.1)

Dl,j+1 + Dj+1,j + Dji ≤ Dlj + Dj,j+1 + Dj+1,i , (5.2)

Dij + Dl,j+1 ≤ Dlj + Di,j+1, (5.3)

Dji + Dj+1,l ≤ Djl + Dj+1,i . (5.4)

We say that a tour on cities 0,1, . . . , n is pyramidal if it is of the form (0, i1, . . . , ir , n,

j1, . . . , jn−r−1), where i1 < i2 < · · · < ir and j1 > j2 > · · · > jn−r−1. Demidenko () showed
the following for the asymmetric TSP.

Theorem 5.2 (Demidenko) If D ∈ R
(n+1)×(n+1) satisfies the Demidenko conditions, then

for any tour there exists a pyramidal tour of no greater cost. Moreover, a minimum cost
pyramidal tour can be determined in O(n2) time.

Author's personal copy

Ann Oper Res

Coming back to Problem 2.4, suppose the work requirement of jobs is consistent across
machines: that is, for any two jobs j, k ∈ J , we have that p1j ≤ p1k implies p2j ≤ p2k . Then
we have the following theorem.

Theorem 5.3 If the work required is consistent across machines, then there exists an optimal
schedule for Problem 2.4 that corresponds to a pyramidal TSP tour, and such a schedule can
be found in O(n2) time.

Proof Fix i, j, l ∈ {0,1, . . . , n} such that i < j < j + 1 < l. Without loss of generality,
suppose p11 ≤ p12 ≤ · · · ≤ p1n and p21 ≤ p22 ≤ · · · ≤ p2n. We can do this since the work
is assumed to be consistent across machines. Therefore, p1i ≤ p1j ≤ p1,j+1 ≤ p1l and p2i ≤
p2j ≤ p2,j+1 ≤ p2l . We prove that Djk = (pα

1k +pα
ij)

1
α for j, k ∈ {0,1, . . . , n} such that j �= k

and Djj = +∞ for j = 0,1, . . . , n satisfies the Demidenko conditions.

Conditions (5.1): Let g(x) = (xα +pα
2i)

1
α − (xα +pα

2,j+1)
1
α . Then it is straightforward to

verify that g′(x) ≥ 0, and so we have g(p1,j+1) ≥ g(p1j), i.e.

(
pα

1,j+1 + pα
2i

) 1
α − (

pα
1,j+1 + pα

2,j+1

) 1
α ≥ (

pα
1j + pα

2i

) 1
α − (

pα
1j + pα

2,j+1

) 1
α .

This is equivalent to

(
pα

1,j+1 + pα
2i

) 1
α − (

pα
1j + pα

2i

) 1
α + (

pα
1j + pα

2,j+1

) 1
α − (

pα
1,j+1 + pα

2j

) 1
α

≥ (
pα

1,j+1 + pα
2,j+1

) 1
α − (

pα
1,j+1 + pα

2j

) 1
α .

Let f (x) = (xα + pα
2,j+1)

1
α − (xα + pα

2j)
1
α . Similarly we can prove that f ′(x) ≤ 0, and so

(
pα

1,j+1 + pα
2,j+1

) 1
α − (

pα
1,j+1 + pα

2j

) 1
α ≥ (

pα
1l + pα

2,j+1

) 1
α − (

pα
1l + pα

2j

) 1
α .

So we have
(
pα

1,j+1 + pα
2i

) 1
α − (

pα
1j + pα

2i

) 1
α + (

pα
1j + pα

2,j+1

) 1
α − (

pα
1,j+1 + pα

2j

) 1
α

≥ (
pα

1l + pα
2,j+1

) 1
α − (

pα
1l + pα

2j

) 1
α ,

or equivalently

Di,j+1 − Dij + Dj+1,j − Dj,j+1 ≥ Dj+1,l − Djl,

which indicates that conditions (5.1) are satisfied.
Conditions (5.2): Similar to the proof of conditions (5.1).
Conditions (5.3): Let h(x) = (xα + pα

2i)
1
α − (xα + pα

2l)
1
α . Then it is straightforward to

verify that h′(x) ≥ 0, so we have
(
pα

1,j+1 + pα
2i

) 1
α − (

pα
1,j+1 + pα

2l

) 1
α ≥ (

pα
1j + pα

2i

) 1
α − (

pα
1j + pα

2l

) 1
α ,

which indicates that conditions (5.3) are satisfied.
Conditions (5.4): Similar to the proof of conditions (5.3). �

In general, it may be the case that different jobs have their own speed ranges and power
functions (e.g. Bansal et al. 2009). In other words, it may be the case that each job j has a
power function of the form aj s

α
j + cj , where sj ∈ [smin

j , smax
j] � Sj . Under this environment,

we may obtain different functions p(j, k) with respect to p1k and p2j for each block (j, k)

in Problem 2.4. Using the Demidenko conditions, we can extend Theorem 5.3 as follows.

Author's personal copy

Ann Oper Res

Theorem 5.4 For Problem 2.4, if the functions p(j, k) for all j, k ∈ {0,1, . . . , n} with j �= k

are determined by a twice differentiable function g(x, y) such that p(j, k) = g(p1k,p2j) and
∂2g

∂x∂y
< 0, then there must exist an optimal schedule that corresponds to a pyramidal tour.

Proof Fix i, j, l ∈ {0,1, . . . , n} such that i < j < j + 1 < l. Without loss of generality, sup-
pose p11 ≤ p12 ≤ · · · ≤ p1n and p21 ≤ p22 ≤ · · · ≤ p2n. Similar to the proof of Theorem 5.3,
we show that the matrix D such that Djk = p(j, k) for all j, k ∈ {0,1, . . . , n} such that j �= k

satisfies the Demidenko conditions under the above assumption.
To show conditions (5.1) are satisfied, we need to prove that

g(p1,j+1,p2i) + g(p1j ,p2,j+1) + g(p1l , p2j)

≥ g(p1j ,p2i) + g(p1,j+1,p2j) + g(p1l , p2,j+1).

Let h(x) = g(x,p2i)−g(x,p2,j+1). Then ∂h
∂x

= ∂g(x,p2i)

∂x
− ∂g(x,p2,j+1)

∂x
. Because ∂2g

∂x∂y
< 0, we

obtain that ∂h
∂x

≥ 0. So

g(p1,j+1,p2i) − g(p1,j+1,p2,j+1) ≥ g(p1j ,p2i) − g(p1j ,p2,j+1).

Similarly, we can also prove that

g(p1,j+1,p2,j+1) − g(p1,j+1,p2j) ≥ g(p1l , p2,j+1) − g(p1l , p2j).

Combining the above two results, conditions (5.1) are satisfied.
Using the same arguments as in the proof of Theorem 5.3 and above, we can verify

conditions (5.2), (5.3), and (5.4) similarly. �

5.3 Equal work requirements across machines

If the work required for each job is equal on each machine—that is, for any job j ∈ J ,
we have that p1j = p2j = pj —then we can further refine the results of the previous sub-
section. By Theorem 5.3, there exists an optimal pyramidal tour for this variant of Prob-
lem 2.4. For this variant, we claim that there must exist an optimal schedule of the form
(1,3,5, . . . , n, . . . ,6,4,2), assuming that p1 ≤ p2 ≤ · · · ≤ pn.

Lemma 5.5 Consider a subsequence of an optimal schedule as follows:

If pi ≤ pc , then we must have pj ≤ pb .

Proof By contradiction. Suppose in an optimal schedule σ1, we have pi ≤ pc but pj > pb .
Consider rescheduling the jobs between job i and c in reverse order as follows (i.e. i →
b → a → ·· · → k → j → c). Denote this new schedule as σ2.

Author's personal copy

Ann Oper Res

Denote the makespan of schedule σi as Cσi
, i = 1,2. Then we have

Cσ1 − Cσ2 = (pα
i + pα

j)
1
α + (pα

c + pα
b)

1
α − (pα

i + pα
b)

1
α − (pα

c + pα
j)

1
α

(Qmax)
1
α

.

Similar to the proof of Theorem 5.3, we can show that Cσ1 − Cσ2 > 0, which contradicts
schedule σ1 being optimal. �

Lemma 5.6 For any optimal schedule, suppose that the first job processed is job i, the
second is b and the last is c. Without loss of generality, if we assume that pi ≤ pc , then there
must exist an optimal schedule which satisfies pb ≥ pc .

Proof By contradiction. If an optimal schedule σ1 does not satisfy pb ≥ pc , i.e. pb < pc ,
then we reschedule job i so that i becomes the last job in the schedule, while maintaining
the ordering of all the other jobs. We denote the new schedule as σ2:

Similar to the proof of Theorem 5.3, it is easy to verify that

Cσ1 − Cσ2 = pc + (pα
i + pα

b)
1
α − pb − (pα

i + pα
c)

1
α

(Qmax)
1
α

> 0,

and so schedule σ1 is not optimal. �

Theorem 5.7 Assuming that p1 ≤ p2 ≤ · · · ≤ pn, there must exist an optimal schedule of
the form (1,3,5, . . . , n, . . . ,6,4,2).

Proof For simplicity, we denote the workload of the job in j th position of an optimal sched-
ule as pσ(j). Without loss of generality, we assume that pσ(1) ≤ pσ(n). By Lemma 5.5, we
obtain that pσ(i) ≤ pσ(n−i+1) for i = 1, . . . ,
 n

2 �. By Lemma 5.6, we have pσ(2) ≥ pσ(n). Con-
sider the subsequence of an optimal schedule from the second position to the nth position.
By Lemma 5.5, we obtain that pσ(i+1) ≥ pσ(n−i+1) for i = 1, . . . ,
 n

2 �. Combining the above
results, we have pσ(1) ≤ pσ(n) ≤ pσ(2) ≤ pσ(n−1) ≤ pσ(3) ≤ · · · , and so there exists an optimal
schedule of the form (1,3,5, . . . , n, . . . ,6,4,2). �

6 Conclusions and future work

To the best of our knowledge, our paper is one of the first to consider a multi-objective
flow shop scheduling problem with traditional time-based objectives (i.e. makespan) as well
as energy-based objectives (i.e. peak power consumption). In particular, in this paper, we

Author's personal copy

Ann Oper Res

studied the permutation flow shop problem with peak power consumption constraints (the
PFSPP problem). We proposed two mixed integer programming formulations and accompa-
nying valid inequalities for the case of discrete speeds. A key feature of our formulation is
variables and constraints that keep track of jobs running concurrently across machines. This
may be of interest in other applications.

We investigated the computational performance of these formulations with instances aris-
ing from the manufacture of cast iron plates. Although our valid inequalities for the assign-
ment and positional formulation resulted in better computational performance, especially
for small-to-moderate sized instances, we still had difficulty obtaining optimal schedules in
a reasonable amount of time for instances with large numbers of jobs and machines. One
potential direction for future research is to develop stronger valid inequalities for our formu-
lations, in the hopes of strengthening these formulations and improving their computational
performance.

We also showed that our scheduling problem can be recast as an asymmetric TSP when
the flow shop has two machines with zero intermediate storage. In addition, we were able to
obtain stronger structural characterizations of optimal schedules and polynomial time algo-
rithms to find these schedules when the speed set is continuous and the work requirements
satisfy certain conditions.

Of course, there are many other possible directions for future research stemming from
this work. For example, the computational complexity of the PFSPP problem remains open
when there are two machines. It would be interesting to fully characterize which two-
machine variants of our scheduling problem are NP-hard or polynomial time solvable. Since
minimizing the makespan in an ordinary permutation flow shop is NP-hard when there are
three or more machines (Garey et al. 1976) and the PFSPP problem can be seen as a special
case of this ordinary permutation flow shop problem (by setting the peak power consumption
threshold Qmax sufficiently high), the PFSPP problem is also NP-hard when there are three
or more machines. Another interesting direction would be to determine when our proposed
formulations have strong LP relaxations. Last but not least, it would also be interesting
to consider different time or energy objectives (e.g. total weighted completion time, car-
bon footprint) or some other complex machine environments with peak power consumption
constraints.

References

Albers, S. (2010). Energy-efficient algorithms. Communications of the ACM, 53(5), 86–96.
Babu, C. A., & Ashok, S. (2008). Peak load management in electrolytic process industries. IEEE Transactions

on Power Systems, 23(2), 399–405.
Bansal, N., Kimbrel, T., & Pruhs, K. (2007). Speed scaling to manage energy and temperature. Journal of the

ACM, 54(1), 1–39.
Bansal, N., Chan, H. L., & Pruhs, K. (2009). Speed scaling with an arbitrary power function. In Proceedings

of the 20th annual ACM-SIAM symposium on discrete algorithms (pp. 693–701).
Bouzid, W. (2005). Cutting parameter optimization to minimize production time in high speed turning. Jour-

nal of Materials Processing Technology, 161(3), 388–395.
Cochran, R., Hankendi, C., Coskun, A., & Reda, S. (2011). Pack & cap: adaptive DVFS and thread packing

under power caps. In Proceedings of the 44th annual IEEE/ACM international symposium on microar-
chitecture.

Dahmus, J. B., & Gutowski, T. G. (2004). An environmental analysis of machining. In ASME 2004 interna-
tional mechanical engineering congress and exposition (pp. 643–652).

Demidenko, V. M. (1979). The traveling salesman problem with asymmetric matrices. Izvestiâ Akademii
Nauk BSSR. Seriâ Fiziko-Matematičeskih Nauk, 1, 29–35 (in Russian).

Drake, R., Yildirim, M. B., Twomey, J., Whitman, L., Ahmad, J., & Lodhia, P. (2006). Data collection frame-
work on energy consumption in manufacturing. In IIE annual conference and expo 2006.

Author's personal copy

Ann Oper Res

Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing
for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234–
240.

Felter, W., Rajamani, K., Keller, T., & Rusu, C. (2005). A performance-conserving approach for reducing
peak power consumption in server systems. In Proceedings of the 19th annual international conference
on supercomputing (pp. 293–302).

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling.
Mathematics of Operations Research, 1(2), 117–129.

Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., Sheng, P., Sutherland, J., Thurston,
D., & Wolff, E. (2005). Environmentally benign manufacturing: observations from Japan, Europe and
the United States. Journal of Cleaner Production, 13, 1–17.

Irani, S., & Pruhs, K. R. (2005). Algorithmic problems in power management. SIGACT News, 36(2), 63–76.
Keha, A. B., Khowala, K., & Fowler, J. W. (2009). Mixed integer programming formulations for single

machine scheduling problems. Computers & Industrial Engineering, 56(1), 357–367.
Kontorinis, V., Shayan, A., Tullsen, D. M., & Kumar, R. (2009). Reducing peak power with a table-driven

adaptive processor core. In Proceedings of the 42nd annual IEEE/ACM international symposium on
microarchitecture (pp. 189–200).

Kwon, W. C., & Kim, T. (2005). Optimal voltage allocation techniques for dynamically variable voltage
processors. ACM Transactions on Embedded Computing Systems, 4(1), 211–230.

Lasserre, J. B., & Queyranne, M. (1992). Generic scheduling polyhedra and a new mixed-integer formula-
tion for single-machine scheduling. In Proceedings of the 2nd integer programming and combinatorial
optimization conference (pp. 136–149).

Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2), 219–223.
Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness

on a single machine. International Journal of Sustainable Engineering, 1(2), 105–116.
Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy con-

sumption of manufacturing equipment. International Journal of Production Research, 45(18–19), 4247–
4271.

Mudge, T. (2001). Power: a first-class architectural design constraint. Computer, 34(4), 52–58.
Oberg, E., Jones, F. D., Horton, H. L., & Ryffel, H. H. (2008). Machinery’s handbook (28th ed.). New York:

Industrial Press.
Reddi, S. S., & Ramamoorthy, C. V. (1972). On the flow-shop sequencing problem with no wait in process.

Operational Research Quarterly, 23(3), 323–331.
Stafford, E. F. Jr., Tseng, F. T., & Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models.

Journal of the Operational Research Society, 56, 88–101.
Thörnblad, K., Strömberg, A. B., & Patriksson, M. (2010). Optimization of schedules for a multitask produc-

tion cell. In The 22nd annual NOFOMA conference proceedings.
Unlu, Y., & Mason, S. J. (2010). Evaluation of mixed integer programming formulations for non-preemptive

parallel machine scheduling problems. Computers & Industrial Engineering, 58(4), 785–800.
Wagner, H. M. (1959). An integer linear-programming model for machine scheduling. Naval Research Lo-

gistics Quarterly, 6(2), 134–140.
Yao, F., Demers, A., & Shenker, S. (1995). A scheduling model for reduced CPU energy. In Proceedings of

the 36th annual symposium on foundations of computer science (pp. 374–382).

Author's personal copy

	Flow shop scheduling with peak power consumption constraints
	Abstract
	Introduction
	Mathematical description of the problem
	Discrete speeds and unlimited intermediate storage: mixed integer programming formulations
	Disjunctive formulation
	Assignment and positional formulation
	Lower and upper bounds for start and completion time decision variables
	Basic AP formulation
	Strengthening the basic AP formulation: concurrent job valid inequalities
	Strengthening the basic AP formulation: nondelay valid inequalities

	Experimental study
	Computational environment
	Two heuristic algorithms for finding feasible schedules
	Experiment 1: makespan (Cmax) vs. power consumption (Qmax)
	Experiment 2: disjunctive vs. basic AP formulation
	Experiment 3: basic AP formulation vs. enhanced AP formulation

	Two machines, discrete speeds, and zero intermediate storage
	Two machines, continuous speeds, and zero intermediate storage
	Arbitrary work requirements across machines
	Consistent work requirements across machines
	Equal work requirements across machines

	Conclusions and future work
	References

