Exam 2 – Information and Review Problems

1 Information

- When: Wednesday October 3, in class
- What: Lessons 10 23
 - o (The relevant parts of Sections 13.1 13.4, 14.1, 14.3, 14.4 in Stewart)
- No outside materials (e.g. notes, homework, books) allowed
- No calculators allowed
 - o The exam will be designed so that only simple calculations are necessary
- Review on Monday October 1
 - We will discuss some of the problems below, as well as any questions that you might have
- Homework 24 (assigned on Friday September 28) is due on Thursday October 4
 - o Due date is changed on WebAssign
- EI on Tuesday October 2, 1930 2130, CH348

2 Review Problems

Note: these problems together are not meant to represent the total length of the exam.

Problem 1. Let $\vec{r}(t) = (t)\vec{i} + (\cos \pi t)\vec{j} + (\sin \pi t)\vec{k}$.

- a. Sketch the curve $\vec{r}(t)$, $t \ge 0$.
- b. Find $\vec{r}'(t)$.
- c. Find $\vec{r}''(t)$.
- d. Find $\int_0^1 \vec{r}(t) dt$.
- e. Find the unit tangent vector at the point where t = 0.

Problem 2. The positions of two airplanes at time *t* are given by the vector functions

$$\vec{r}_1(t) = \langle -3 + 4t, t^2, -6 + 5t \rangle$$
 $\vec{r}_2(t) = \langle t^2, -12 + 7t, t^2 \rangle$

Do the airplanes collide? If not, do their paths intersect?

Problem 3. Find the length of the curve $\vec{r}(t) = \langle 2t, \cos 2t, \sin 2t \rangle$, $0 \le t \le 1$.

Problem 4. A ball is thrown from 2 m above the ground with an initial speed of 14 m/s and angle of elevation 60° . Use $g = 9.8 \text{ m/s}^2$.

- a. **Set up** an equation whose solution gives you the time *t* at which the ball lands. Do not solve the equation.
- b. Suppose the solution to the equation you set up in part a is t = -0.14, 1.38. Explain in words how you would use this to obtain the range of the ball. You do not have to give a numerical value for the projectile's range.

Problem 5. Make a rough sketch of a contour map for the function whose graph is shown below.

Problem 6. A contour map for a function f is shown below.

- a. Estimate f(3, 2).
- b. Is $f_x(1,1)$ positive or negative?
- c. Is $f_v(4,0)$ positive or negative?

Problem 7. Find the first partial derivatives.

a.
$$f(x, y) = \sqrt{2x + y^2}$$

a.
$$f(x, y) = \sqrt{2x + y^2}$$

b. $f(x, y) = e^{-x} \sin 2y$

c.
$$g(u, v) = u \arctan v$$

c.
$$g(u, v) = u \arctan v$$

d. $f(x, y, z) = \frac{x}{y - z}$

Problem 8. Let $f(x, y) = e^x \cos y$.

- a. Find $f_x(x, y)$.
- b. Find $f_v(x, y)$.
- c. Find $f_{xy}(x, y)$.
- d. Find $f_{yx}(x, y)$.
- e. Find an equation of the tangent plane to the surface z = f(x, y) at (0, 0, 1).
- f. Use your answer in part e to approximate f(0.1, -0.1).