Lesson 1. 3D Coordinate Systems

1 Today...

- 3D rectangular coordinate system
- Distance formula in 3D
 - o Equation for a sphere
- Graphing equations in 3D

2 3D rectangular coordinate system

- How do we locate points in space?
- 3 mutually perpendicular **coordinate axes** through origin *O*:

• 3 coordinate planes

- xy-plane contains the
 xz-plane contains the
 yz-plane contains the
- The coordinate planes divide space into 8 octants
 - The **first octant** is the octant with positive axes

• Any point P in space can be represented an ordered triple (a, b, c):

• (a, b, c) are the **rectangular coordinates** of P (also known as **Cartesian coordinates**)

- a is called the x-coordinate of P
- \circ *b* is called the *y*-coordinate of *P*
- \circ *c* is called the *z*-coordinate of *P*

• (a, b, 0) is the **projection** of P(a, b, c) on the

• (0, b, c) is the projection of P(a, b, c) on the

• (a, 0, c) is the projection of P(a, b, c) on the

 $\bullet\,$ We often refer to three-dimensional space as \mathbb{R}^3

Example 1.

(a) Plot P(3, -1, 2).

(b) What is the projection of P onto the xy-plane?

3 Distance formula in 3D

• The **distance** between two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

I		
I		
I		

Example 2. What is the distance from the point P(2, -1, 0) and Q(4, 1, 1)?

	•	, , ,	•	

• A **sphere** is the set of all points P(x, y, z) whose distance from a center C(h, k, l) is radius r

• The standard equation for a sphere with radius r and center (h, k, l) is

Example 3. Show that $x^2 + y^2 + z^2 - 2x - 4y + 8z = 15$ represents a sphere, and find its center and radius.

4 Graphing equations in 3D

Example 4. Which points (x, y, z) satisfy y = 2 in \mathbb{R}^3 ?

Example 5.

(a) Draw $y = x^2$ in \mathbb{R}^3 .

(b) Draw $y = x^2, z = 2 \text{ in } \mathbb{R}^3$.

Example 6. Give an equation for the

• <i>xz</i> -plane:	
---------------------	--

• *xy*-plane:

• *yz*-plane: