Lesson 2. Vectors

1 Today...

- Vectors graphically
- Vectors algebraically
- Standard basis vectors and unit vectors
- Problems with forces

2 Vectors graphically

• A vector is an object that has both

and

- Often represented by an arrow:
 - Length of arrow represents magnitude of vector
 - Arrow points in direction of vector
- Notation: **v** or \vec{v}

- A vector has an **initial point** (the tail) and a **terminal point** (the tip)
- Two vectors are equivalent if they have the same magnitude and direction
 - For example: \vec{u} and \vec{v} are equivalent, even though they are in different positions

- The zero vector $\vec{0}$ has magnitude 0
 - \circ $\vec{0}$ is the only vector with no specific direction

2.1 Adding vectors

- Let \vec{u}, \vec{v} be vectors $\Rightarrow \vec{u} + \vec{v}$ is another vector
- Triangle law for adding vectors:

• Parallelogram law for adding vectors:

2.2 Scalar multiplication

- Let *c* be a scalar, \vec{v} be a vector $\Rightarrow c\vec{v}$ is another vector
 - If c > 0, then $c\vec{v}$ is a vector in the same direction as \vec{v} and |c| times the length of \vec{v}
 - If c < 0, then $c\vec{v}$ is a vector in the opposite direction as \vec{v} and |c| times the length of \vec{v}
 - If c = 0, then $c\vec{v} = \vec{0}$
- Note that we can subtract vectors: $\vec{u} \vec{v} = \vec{u} + (-1\vec{v})$

Example 1. Consider the vectors drawn below:

Draw: (a) $2\vec{b}$ (b) $2\vec{b} - \vec{a}$

3 Vectors algebraically

- How do we represent vectors numerically?
- A vector \vec{a} can be represented by an ordered list of numbers:
 - In \mathbb{R}^2 : $\vec{a} = \langle a_1, a_2 \rangle$
 - In \mathbb{R}^3 : $\vec{a} = \langle a_1, a_2, a_3 \rangle$
- These numbers (e.g. a_1, a_2, a_3) are known as **components** of \vec{a}
 - The components of a vector indicate the distance between the initial point and the terminal point in each coordinate axis direction

Example 2. Draw the following vectors in \mathbb{R}^2 : (a) $\vec{a} = \langle 1, 2 \rangle$ (b) $\vec{b} = \langle 3, -1 \rangle$

- Let's stick with \mathbb{R}^3 for now
- Let \vec{a} be a vector in \mathbb{R}^3 that starts at point $A(x_1, y_1, z_1)$ and ends at $B(x_2, y_2, z_2)$

```
\Rightarrow \vec{a} =
```

• The **magnitude** or **length** of vector $\vec{a} = \langle a_1, a_2, a_3 \rangle$ is

• Adding vectors: $\langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle =$

- Subtracting vectors: $\langle a_1, a_2, a_3 \rangle \langle b_1, b_2, b_3 \rangle =$
- Scalar multiplication: $c(a_1, a_2, a_3) =$

Example 3. Let $\vec{a} = \langle 2, -4, 3 \rangle$ and $\vec{b} = \langle -4, 0, 2 \rangle$.

- 1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ 5. $c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$

 2. $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ 6. $(c + d)\vec{a} = c\vec{a} + d\vec{a}$

 3. $\vec{a} + \vec{0} = \vec{a}$ 7. $(cd)\vec{a} = c(d\vec{a})$

 4. $\vec{a} + (-\vec{a}) = \vec{0}$ 8. $1\vec{a} = \vec{a}$
- 4 Standard basis vectors and unit vectors
 - Standard basis vectors in \mathbb{R}^3

• We can write any vector as the sum of scalar multiples of standard basis vectors:

$$\langle a_1, a_2, a_3 \rangle = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$

- A **unit vector** is a vector with length 1
 - For example, \vec{i} , \vec{j} , \vec{k} are all unit vectors
- If $\vec{a} \neq \vec{0}$, then the unit vector that has the same direction as \vec{a} is $\frac{1}{|\vec{a}|}\vec{a}$

Example 4. Let $\vec{a} = 4\vec{i} - \vec{j} + 2\vec{k}$ and $\vec{b} = \vec{i} + 2\vec{k}$.

- (a) Write $\vec{a} 2\vec{b}$ in terms of $\vec{i}, \vec{j}, \vec{k}$.
- (b) Find a unit vector in the direction of $\vec{a} 2\vec{b}$.

• Note: everything we've discussed in Sections 3 and 4 apply to vectors in \mathbb{R}^2 in a similar way

5 Problems with forces

- Some physics:
 - Force has magnitude and direction, and so it can be represented by a vector
 - Force is measured in pounds (lbs) or newtons (N)
 - If several forces are acting on an object, the **resultant force** experienced by the object is the <u>sum</u> of these forces

Example 5. A weight \vec{w} counterbalances the tensions (forces) in two wires as shown below:

The tensions \vec{T}_1 and \vec{T}_2 both have a magnitude of 20lb. Find the magnitude of the weight \vec{w} .

• Note: if an object has a mass of *m* kg, then it has a weight of mg N, where g = 9.8