SM223 – Calculus III with Optimization Asst. Prof. Nelson Uhan

# Lesson 4. The Dot Product (cont.)

#### 1 Today...

- Direction angles and direction cosines
- Projections and work

#### 2 Warm up

**Example 1.** Consider the triangle with vertices P(2, 0), Q(0, 3) and R(3, 4).

- (a) Find  $\overrightarrow{PQ}$ ,  $\overrightarrow{QR}$  and  $\overrightarrow{PR}$ .
- (b) Find the angle  $\angle PQR$  (hint: find the angle between  $\overrightarrow{QP}$  and  $\overrightarrow{QR}$ )

### 3 Direction angles and direction cosines

• **Direction angles** for vector  $\vec{a} = \langle a_1, a_2, a_3 \rangle$ :



- Again, we take  $\alpha$ ,  $\beta \gamma$  always to be in  $[0, \pi]$
- Remember that if  $\theta$  is the angle between  $\vec{a}$  and  $\vec{b}$ , then  $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

• Direction cosines





## 4 Projections

• Vector projection of  $\vec{b}$  onto  $\vec{a}$ :



- Denoted by  $\operatorname{proj}_{\vec{a}}\vec{b}$
- $\circ~$  "Shadow" of  $\vec{b}$  onto  $\vec{a}$
- Scalar projection of  $\vec{b}$  onto  $\vec{a}$  = signed magnitude of  $\text{proj}_{\vec{a}}\vec{b}$ 
  - Also called the **component** of  $\vec{b}$  along  $\vec{a}$
  - Denoted by  $\operatorname{comp}_{\vec{a}}\vec{b}$
- The scalar and vector projections can be computed using dot products:



**Example 3.** Find the scalar projection and vector projection of  $\vec{b} = \langle 1, 1, 2 \rangle$  onto  $\vec{a} = \langle -2, 3, 1 \rangle$ .

• The work done by a constant force  $\vec{F}$  in moving an object along a displacement vector  $\vec{D}$  is defined as





**Example 4.** A force  $\vec{F} = 5\vec{i} - 2\vec{j} + 3\vec{k}$  moves a particle from the point P(2, 0, -1) to the point Q(6, 2, 4). Find the work done.