Lesson 7. Equations of Planes in 3D

1 Today...

- Skew lines
- Vector and scalar equations
 - Normal vectors

2 Skew lines

- Two lines are **parallel** if their directions are given by parallel vectors
- Two lines are **skew lines** if they do not intersect and are not parallel
 - o i.e., they do not lie on the same plane

Example 1. Here are parametric equations for two lines:

$$\begin{cases} x = 1 + t \\ y = -2 + 3t \\ z = 4 - t \end{cases} \qquad \begin{cases} x = 2s \\ y = 3 + s \\ z = -3 + 4s \end{cases}$$

Show they are skew lines.

3 Vector and scalar equations

- A **plane** is determined by
 - a point $P_0(x_0, y_0, z_0)$ on the plane and
 - a **normal vector** \vec{n} orthogonal to the plane
- Let \vec{r}_0 be the position vector of P_0
- Let \vec{r} be the position vector of some point on the plane
- $\Rightarrow \vec{r} \vec{r}_0$ is a vector in the plane, and must be orthogonal to the normal vector \vec{n}

• The **vector equation** of the plane is

- Let $\vec{n} = \langle a, b, c \rangle$ and $\vec{r} = \langle x, y, z \rangle$
- $\bullet\;$ Expanding the vector equation, we obtain the ${\bf scalar\;equation}$ of the plane

I		

Example 2.

- (a) Find an equation of the plane through the point (-1, 4, 2) with normal vector $\vec{n} = (4, 3, 2)$.
- (b) Find where the plane intercepts the x-, y- and z-axes. Sketch the plane in the first orthant.

Example 3. Find an equation of the plane that passes through the points P(1,2,3), Q(3,6,-1) and R(5,0,2).

Example 4. Find an equation of the plane that passes through the point $(1,2,3)$ and contains the line $x = 3t$, $y = 1 + t$, $z = 2 - t$.				