SM223 – Calculus III with Optimization Asst. Prof. Nelson Uhan

Lesson 8. Equations of Planes in 3D, Cylinders

- 1 Today...
 - Intersections between lines and planes
 - Angles between planes and parallel planes
 - Distance between a point and a plane
 - Cylinders

2 Intersections between lines and planes

Example 1. Find the point at which the line

$$x = 1 + 2t$$
, $y = 4t$, $z = 2 - 3t$

intersects the plane x + 2y - z + 1 = 0.

3 Angles between planes and parallel planes

- Two planes are **parallel** if their normal vectors are parallel
- If two planes are not parallel, then
 - They intersect in a straight line
 - The **angle** between the two planes is the acute angle between their normal vectors

Fall 2012

Example 2.

- (a) Find the angle between the planes 3x 2y + z = 1 and 2x + y 3z = 3.
- (b) Find parametric equations for the line of intersection between these two planes.

4 Distance between planes

• The distance between a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0 is

Example 3. Find the distance between the parallel planes 10x + 2y - 2z = 5 and 5x + y - z = 1.

5 Cylinders

- A cylinder is a surface composed of all lines that
 - are parallel to a given line and
 - pass through a given plane curve
- In 3D, if one of the variables *x*, *y*, *z* is missing from the equation of a surface, then the surface is a cylinder.

Example 4. Sketch the graph of the surface $z = x^2$.

Example 5. Sketch the graph of the surface $y^2 + z^2 = 1$.

Example 6. Sketch the graph of the surface xy = 1.

