Lesson 10. Vector Functions and Space Curves

1 Today...

- Vector functions
- Space curves

2 Vector functions

- A vector function
 - o takes a real number as input and
 - o outputs a vector
- For example, a 3D vector function:

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}$$

where f(t), g(t), and h(t) are real-valued functions

- of f(t), g(t), and h(t) are the **component functions** of $\vec{r}(t)$
- We can also have 2D vector functions: $\vec{r}(t) = \langle f(t), g(t) \rangle = f(t)\vec{i} + g(t)\vec{j}$

3 Space curves

- Suppose *f* , *g* , *h* are (continuous) real-valued functions
- A **space curve** is the set of all points (x, y, z) in space that satisfy

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

as t varies in some interval (possibly $(-\infty, +\infty)$)

- $\Rightarrow \vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is the position vector of the point P(f(t), g(t), h(t)) on this curve
- For example, if

$$f(t) = x_0 + at$$
 $g(t) = y_0 + bt$ $h(t) = z_0 + ct$

for some point (x_0, y_0, z_0) and some vector (a, b, c), then $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is a line

Example 1. Let $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$.

- (a) Evaluate $\vec{r}(t)$ at $t = 0, \pi/2, \pi, \pi/2, 2\pi$.
- (b) Sketch the curve given by $\vec{r}(t)$.

Example 2. Match the vector functions with the graphs. Give reasons for your choices.

- (a) $\vec{r}(t) = \langle t \cos t, t \sin t, t \rangle$
- (b) $\vec{r}(t) = \langle \cos t, \sin t, \sin 2t \rangle$ (c) $\vec{r}(t) = \langle e^{-3t/5}, t, t^2 \rangle$

Example 3. The positions of two airplanes at time t are given by the vector functions

$$\vec{r}_1(t) = \langle 1 + 2t, 1 + 6t, 1 + 14t \rangle$$
 $\vec{r}_2(t) = \langle t, t^2, t^3 \rangle$

Do the airplanes collide? *Bonus*: Do their paths intersect?