Lesson 11. Derivatives and Integrals of Vector Functions

0 Warm up

Example 1. Find these derivatives and integrals.

(a)
$$\frac{d}{dt}(1+t^3) =$$

(d)
$$\int 2t \ dt =$$

(b)
$$\frac{d}{dt}(\cos 2t) =$$

(e)
$$\int 2\cos t \, dt =$$

(c)
$$\frac{d}{dt}(te^{-t}) =$$

(f)
$$\int_0^{2\pi} 3 dt =$$

1 Today...

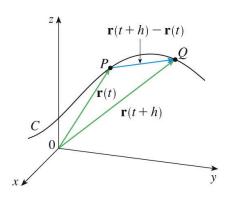
- Derivatives of vector functions
- Integrals of vector functions
- Arc length

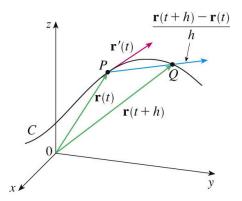
2 Derivatives

• The **derivative** of \vec{r} is

$$\frac{d\vec{r}}{dt} = \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

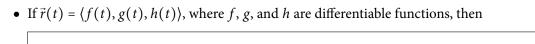
• Note: the derivative of a vector function is also a vector





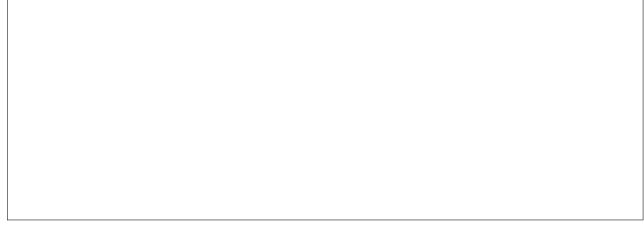
- Let *C* be the curve defined by \vec{r}
- Let $\vec{r}(t)$ be the position vector of P
- The derivative $\vec{r}'(t)$ is the direction vector of the line tangent to *C* at *P*
 - \Rightarrow Sometimes we refer to $\vec{r}'(t)$ as the **tangent vector**

nt vector is	The unit tan
--------------	---------------------

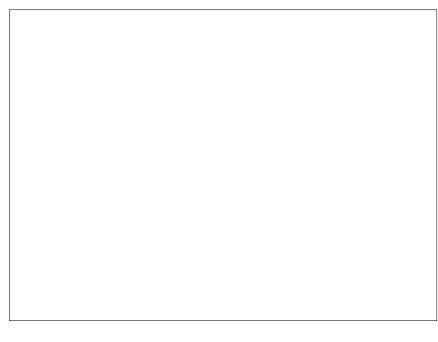


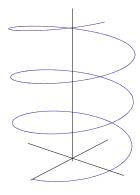
Example 2.

- (a) Find the derivative of $\vec{r}(t) = \langle \cos 2t, 1 + t^3, te^{-t} \rangle$. (b) Find the unit tangent vector at the point where t = 0.



Example 3. Find parametric equations for the tangent line to the curve given by $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$ at point $(0, 1, \pi/2)$.





• Differentiation rules

1.
$$\frac{d}{dt}(\vec{u}(t) + \vec{v}(t)) = \vec{u}'(t) + \vec{v}'(t)$$

4.
$$\frac{d}{dt}(\vec{u}(t)\cdot\vec{v}(t)) = \vec{u}'(t)\cdot\vec{v}(t) + \vec{u}(t)\cdot\vec{v}'(t)$$

$$2. \ \frac{d}{dt}(c\vec{u}(t)) = c\vec{u}'(t)$$

5.
$$\frac{d}{dt}(\vec{u}(t) \times \vec{v}(t)) = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)$$

3.
$$\frac{d}{dt}(f(t)\vec{u}(t)) = f'(t)\vec{u}(t) + f(t)\vec{u}'(t)$$
 6. $\frac{d}{dt}(\vec{u}(f(t))) = f'(t)\vec{u}'(f(t))$

6.
$$\frac{d}{dt}(\vec{u}(f(t)) = f'(t)\vec{u}'(f(t))$$

Integration

• Let f, g, and h be continuous functions

• The **indefinite integral** of a vector function $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is

• The **definite integral** of a vector function $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ from a to b is

• Note: the integral of a vector function is also a vector

Example 4. Let $\vec{r}(t) = \langle 2\sin t, 2\cos t, 2t \rangle$. Find $\int_0^{\pi/2} \vec{r}(t) dt$.

4	Arc	length
---	-----	--------

- Let *C* be a curve with vector equation $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, $a \le t \le b$
- What is the length of C?
- The **arc length** of *C* is

• Similar for curves in 2D

Example 5. Let *C* be the curve defined by $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$, $0 \le t \le 2\pi$. Find the length of *C*.

