Lesson 15. Projectile Motion

1 Today...

- Trajectory of a projectile
- Horizontal distance traveled by a projectile
- Vertical height reached by a projectile, shape of the trajectory

2 Trajectory of a projectile

- A projectile with mass *m* is fired
 - initial point (x_0, y_0)
 - angle of elevation α
 - $\circ~$ initial velocity $\vec{\nu}_0$
- Assume:
 - Air resistance is negligible
 - The only external force is due to gravity

- We (you) will derive parametric equations that describe the trajectory of this projectile
- Recall Newton's second law of motion: if at any time *t*, a force F(t) acts on an object of mass *m* producing an acceleration $\vec{a}(t)$, then $\vec{F}(t) = m\vec{a}(t)$.
- 1. Let's define $v_0 = |\vec{v}_0|$ (we're just renaming the initial speed, or the magnitude of the initial velocity). Using this new notation, write \vec{v}_0 in terms of v_0 and α . *Hint*. You'll need to use trigonometry.

2. We need an expression for the acceleration \vec{a} of the projectile. Since the only external force is due to gravity, which acts downward, we have that $\vec{F}(t) = m\vec{a}(t) = \langle 0, -mg \rangle$. Using this, write an expression for $\vec{a}(t)$.

 $\vec{a}(t) = \langle 0, -g \rangle$

Using your answer from part 2, write an expression for the velocity v(t) of the projectile.
 Hint 1. Recall that a(t) = v'(t). *Hint 2.* Don't forget the constant vector of integration. *Hint 3.* Since the initial velocity is v₀, we have v(0) = v₀. Use the expression for v₀ you obtained in part 1.

$$\vec{v}(t) = \int \vec{a}(t) dt = \left\langle C_{1}, -gt + C_{2} \right\rangle$$
Since $\vec{v}(o) = \vec{v}_{o} = \left\langle v_{o} \cos a, v_{o} \sin a \right\rangle$: $\left\langle v_{o} \cos a, v_{o} \sin a \right\rangle = \left\langle C_{1}, C_{2} \right\rangle$

$$\Rightarrow \left[\vec{v}(t) = \left\langle v_{o} \cos a, v_{o} \sin a - gt \right\rangle \right]$$

4. Now, using your answer from part 3, write an expression for the position r
(t) of the projectile. *Hint 1.* Recall that v
(t) = r
'(t). *Hint 2.* Don't forget the constant vector of integration. *Hint 3.* Since the initial point is (x₀, y₀), we have r
(0) = ⟨x₀, y₀⟩.

$$\vec{r}(t) = \int \vec{v}(t) dt = \left\langle (v_0 \cos a)t + D_1, (v_0 \sin a)t - \frac{1}{2}gt^2 + D_2 \right\rangle$$

Since $\vec{r}(0) = \left\langle x_0, y_0 \right\rangle : \left\langle x_0, y_0 \right\rangle = \left\langle D_1, D_2 \right\rangle$
$$\Rightarrow \left[\vec{r}(t) = \left\langle x_0 + (v_0 \cos a)t, y_0 + (v_0 \sin a)t - \frac{1}{2}gt^2 \right\rangle \right]$$

5. Expand the vector equation you obtained in part 4 to write parametric equations (i.e. x = ..., y = ...) for the trajectory of the projectile.

$$\chi = \chi_0 + (v_0 \cos \alpha)t, \quad y = y_0 + (v_0 \sin \alpha)t - \frac{1}{2}gt^2$$

3 Distance traveled by a projectile

• Let us now work under the assumption that the initial point of the projectile is (0, 0): in other words, $x_0 = 0, y_0 = 0$.

6. The horizontal distance traveled by the projectile *d* is the value of *x* when y = 0. Why?

7. Set y = 0 and $y_0 = 0$ to your expression for *y* in part 5. Solve for *t*.

$$y = y_{o} + (v_{o} \sin \alpha)t - \frac{1}{2}gt^{2}$$

Setting y=0, y_{o}=0: $0 = (v_{o} \sin \alpha)t - \frac{1}{2}gt^{2}$
 $0 = t(v_{o} \sin \alpha - \frac{1}{2}gt)$
 $\Rightarrow t = 0, \frac{2v_{o} \sin \alpha}{g}$

8. Use your answer in part 7 to obtain an expression for the horizontal distance traveled by the projectile.

The projectile hits the ground at
$$t = \frac{2v_0 \sin \alpha}{g}$$
.
=) horizontal distance = $0 + (v_0 \cos \alpha) \left(\frac{2v_0 \sin \alpha}{g}\right) = \frac{2v_0^2 \sin \alpha \cos \alpha}{g} = \frac{v_0^2 \sin 2\alpha}{g}$.

4 Other questions

- 9. Again, assume that the initial point of the projectile is (0, 0). What is the maximum vertical height achieved by the projectile?
- 10. Take your parametric equation for x in part 5 and solve for t. Plug this back into your parametric equation for y. You should have an expression for y in terms of x. This gives you an idea of how the projectile's trajectory looks like in the xy-plane. What shape does the trajectory take?