Lesson 18. Multivariable Functions

1 Today...

- Functions of 2 variables
- Functions of *n* variables
- Graphs of functions of 2 variables

2 Functions of 2 variables

- A function f of 2 variables
 - \circ takes an ordered pair (x, y) of real numbers as input
 - outputs a unique real number f(x, y)
- The **domain** D of f is the set of allowable inputs to f
 - If f is given by a formula and its domain is not explicitly specified, then the domain of f is the set of all (x, y) for which the formula is well-defined
- The **range** of f is the set of values that f takes on

Example 1. Let
$$f(x, y) = \frac{\sqrt{x+y+1}}{x-1}$$
.

- (a) What is f(3, 2)?
- (b) What is the domain of f?

• Example: in 1928, using economic data published by the government, Cobb and Douglas modeled production output P(L, K) as a function of the amount of labor involved L and the amount of capital invested K:

$$P(L,K) = 1.01L^{0.75}K^{0.25}$$

- o This function (in a more general form) is known as the Cobb-Douglas production function
- Note: functions are not always represented by explicit formulas
- Example: the *wind-chill index* W(T, v) is a <u>subjective</u> temperature that is a function of the <u>actual</u> temperature T (in $^{\circ}$ C) and wind speed v (in km/h), as given by the table below:

Wind speed (km/h) 5 10 15 20 25 40 50 60 70 80 5 4 3 2 1 1 -1-1-2-2-30 -2-3-5-6-9 -4-6-8-9-10Actual temperature (°C) -7 -5-9-11-12-12-13-14-15-16-16-17-10-13-15-17-18-19-20-21-22-23-23-24-15-19-21-23-24-25-26-27-29-30-30-31-35-20-24-27-29-30-32-33-34-36-37-38-25-30-33-35-37-39-41-42-43-44-45-38-30-36-39-41-43-44-46-48-49-50-51-52-35-41-45-48-49-51-52-54-56-57-58-60-40-47-51-54-56-57-59-61-63-64-65-67

 \circ If the temperature is -15° C and the wind speed is 40 km/h, then the wind-chill index is

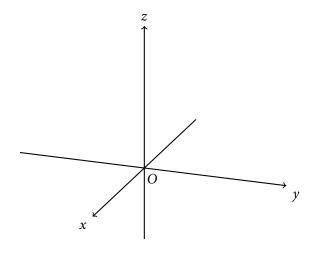
Example 2. Give an example of a function of 2 variables that models some real-world phenomenon. Be creative! In particular:

- (a) Explain what the variables (inputs) represent.
- (b) Explain what the function value (output) represents.
- (c) Give a formula for your function (make up something somewhat reasonable).

3 Functions of n variables

• A function f of n variables

- takes an ordered tuple (x_1, \ldots, x_n) of real numbers as input
- \circ outputs a unique real number $f(x_1, \ldots, x_n)$


• Example:

- Anteater-Bugs produces *n* types of beers
- It costs c_i to produce one bottle of beer i, i = 1, ..., n
- Say that x_i bottles of beer i are produced, i = 1, ..., n
- Cost of producing x_1 bottles of beer 1, x_2 bottles of beer 2, etc.:

4 Graphs of functions in 2 variables

- Let *f* be a function of 2 variables with domain *D*
- The **graph** of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D

Example 3. Sketch the graph of $f(x, y) = x^2 + 2y^2$.

• If the function defines a plane or quadric surface, then figuring out the graph is pretty easy

3

- What about more complicated functions? For example:
 - The Cobb-Douglas function: $f(x, y) = 1.01x^{0.75}y^{0.25}$
 - $\circ f(x, y) = \sin x + \sin y$
 - $o f(x,y) = \frac{x^2 + 3y^2}{e^{-x^2 + y^2}}$