SM223 – Calculus III with Optimization Asst. Prof. Nelson Uhan

Lesson 19. Level Curves

- Another way of visualizing functions of 2 variables: level curves
- The **level curves** of a function f(x, y) are the curves of the equations

where k is a constant

- These curves show where the graph of f has height k, for different values of k
- Sometimes called *contour maps*

- Level curves are close together ⇔ surface is steep
- Level curves are farther apart \Leftrightarrow surface is flatter
- Example: topographic maps
 - Contour lines are curves of

Example 1. The contour map for a function f is given below. Use it to estimate the values of f(1,3) and f(4,5).

Example 2. Sketch the level curves of the function f(x, y) = 6 - 3x - 2y for the values k = -6, 0, 6, 12.

Example 3. Sketch the level curves of the function $f(x, y) = \sqrt{x} - y$ for the values k = 0, 1, 2, 3.

- What about those crazy functions from last time?
 - The Cobb-Douglas function: $f(x, y) = 1.01x^{0.75}y^{0.25}$
 - $\circ f(x, y) = \sin x + \sin y$ $x^2 + 3y^2$
 - $f(x, y) = \frac{x^2 + 3y^2}{e^{-x^2 + y^2}}$

Example 4. Match the function with its graph and contour map.

(a) $f(x, y) = (1 - x^2)(1 - y^2)$ (b) $f(x, y) = \sin(x - y)$ (c) $f(x, y) = e^x \cos y$

