SM223 – Calculus III with Optimization Asst. Prof. Nelson Uhan

Lesson 20. Partial Derivatives

1 Today

- Definition of partial derivative
- Computing partial derivatives
- Higher derivatives

2 Definition

- Derivatives of single-variable functions
 - Instantaneous rate of change
 - Slope of tangent line

- How can we get similar things for multivariable functions? Partial derivatives
- Idea: let f(x, y) be a function of 2 variables
 - Fix the value of y to $b \Rightarrow g(x) = f(x, b)$ is a function in 1 variable x
 - Take the derivative of g(x) = f(x, b) with respect to x
 - This gives us the rate of change of f(x, y) with respect to x when y = b
 - Repeat, but with fixing the value of x and taking the derivative with respect to y

- The partial derivative of f(x, y) with respect to x is
- The partial derivative of f(x, y) with respect to y is

Example 1. Here is the wind-chill index function W(T, v) from Lesson 18:

	Wind speed (km/h)												
Actual temperature (°C)	T V	5	10	15	20	25	30	40	50	60	70	80	
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3	
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10	
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17	
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24	
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31	
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38	
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45	
	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52	
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60	
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67	

(a) Estimate $W_T(-15, 40)$.

(b) Give a practical interpretation of this value.

3 Computing partial derivatives

- Let f(x, y) be a function of 2 variables
- To find f_x , regard y as a constant and differentiate f(x, y) with respect to x
- To find f_y , regard x as a constant and differentiate f(x, y) with respect to y

Example 2. Let $f(x, y) = 3x^3 + 2x^2y^3 - 5y^2$. Find $f_x(2, 1)$ and $f_y(2, 1)$.

Example 3. Let $f(x, y) = \frac{x}{y}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Example 4. Let $f(x, y) = \sin\left(\frac{x}{1+y}\right)$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

4 Higher derivatives

• We can take partial derivatives of partial derivatives

• The second partial derivatives of f(x, y) are

- **Clairaut's theorem.** Suppose f is defined on a disk D that contains the point (a, b). If f_{xy} and f_{yx} are continuous on D, then
- We can take third partial derivatives (e.g. f_{xxy}), fourth partial derivatives (e.g. f_{yxyy}), etc.