Lesson 21. Partial Derivatives, continued Do as many as you can! Problems 1–5 are from the homework assigned today. **Problem 1.** Let $f(x, y) = \arctan(y/x)$. Find $f_x(2, 3)$. **Problem 2.** Let $$f(x, y, z) = \frac{y}{x + y + z}$$. Find $f_y(2, 1, -1)$. (Partial derivatives of functions of 3 or more variables are found the same way: regard all but one variable as constant, and take the derivative with respect to the remaining variable.) **Problem 3.** Find <u>all</u> the second partial derivatives of $f(x, y) = \arctan \frac{x + y}{1 - xy}$. **Problem 4.** Use the table of values of f(x, y) to estimate the values of $f_x(3, 2)$, $f_x(3, 2.2)$ and $f_{xy}(3.2)$. | x y | 1.8 | 2.0 | 2.2 | |-----|------|------|------| | 2.5 | 12.5 | 10.2 | 9.3 | | 3.0 | 18.1 | 17.5 | 15.9 | | 3.5 | 20.0 | 22.4 | 26.1 | **Problem 5.** Level curves are shown for a function f. Determine whether the following partial derivatives are positive or negative at the point P. - (a) f_x - (b) f_y - (c) f_{xx} - (d) f_{xy} - (e) f_{yy} **Problem 6.** Let $f(x, y, z) = \sqrt{\sin^2 x + \sin^2 y + \sin^2 z}$. Find $f_x(0, 0, \pi/4)$. **Problem 7.** Let $f(x, y) = \cos(x^2 y)$. Verify that Clairaut's theorem holds: $f_{xy} = f_{yx}$. **Problem 8.** Let $f(x, y) = x^4y^2 - x^3y$. Find f_{xxx} and f_{xyx} .