Lesson 22. Tangent Planes and Linear Approximations

0 Warm up

Example 1. Find an equation of the plane that passes through (-1, 1, 5) and is perpendicular to the vector (2, 4, -3).

1 Tangent planes

- Let *S* be a surface with equation z = f(x, y)
- Let $P(x_0, y_0, z_0)$ be a point on *S*

- Let T_1 and T_2 be the tangent lines at *P* in the *x* and *y*-directions, respectively
- The **tangent plane** to the surface *S* at point *P* is the plane that contains both tangent lines T_1 and T_2
- A normal vector of the tangent plane is
- \Rightarrow An equation of the tangent plane to the surface z = f(x, y) at point $P(x_0, y_0, z_0)$ is

Example 2. Find the tangent plane to the surface $z = x^2 + xy + 3y^2$ at the point (1, 1, 5).

2 Linear approximations

- What do the level curves of a plane look like?
- As we zoom in on the level curves of an arbitrary surface, they start to look more and more like equally spaced parallel lines

 \Rightarrow We can use tangent planes to approximate function values

• The **linear approximation** of f at (a, b) is

• Compare to equation for tangent plane above: use $x_0 = a$, $y_0 = b$, $z_0 = f(a, b)$

	Wind speed (km/h)											
Actual temperature (°C)	T V	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

Example 3. Here is the wind-chill index function W(T, v) from Lessons 18 and 20:

In Lesson 20, we estimated $W_T(-15, 40) \approx 1.3$. In a similar fashion, we can estimate $W_v(-15, 40) \approx -0.15$. Find the linear approximation of W(T, v) at (-15, 40). Use it to approximate W(-12, 45).

Example 4. Find the linear approximation of $f(x, y) = xe^{xy}$ at (1, 0). Use it to approximate f(1.1, -0.1).

- Why bother with linear approximations?
 - Desert island
 - More importantly: **linear functions** (functions of the form f(x, y) = ax + by) are <u>much</u> easier to deal with that other types of functions
 - \Rightarrow Linear approximations form the basis of many algorithms for complex problems
- Disclaimer: equations for tangent planes and linear approximations above do not necessarily apply when the partial derivatives of *f* are not continuous