Lesson 24. The Chain Rule

1 Today

- Two special cases of the chain rule
- Tree diagrams and the general version of the chain rule

2 Case 1

- Let z = f(x, y) be a function of 2 variables
- Let *x* and *y* be functions of 1 variable: x = g(t) and y = h(t)
 - \Rightarrow *z* is indirectly a function of *t*: *z* = *f*(*g*(*t*), *h*(*t*))
- Can we find the derivative of *z* with respect to *t*?
- Chain rule (Case 1):

Example 1. Let $z = x^2y + 3xy^4$, $x = \sin 2t$, and $y = \cos t$.

- (a) Find dz/dt.
- (b) Find dz/dt when t = 0.

3 Case 2

- Let z = f(x, y) be a function of 2 variables
- Let *x* and *y* be functions of 2 variables: x = g(s, t) and y = h(s, t)
 - \Rightarrow *z* is indirectly a function of *s* and *t*: *z* = *f*(*g*(*s*, *t*), *h*(*s*, *t*))
- We can find the derivative of *z* with respect to *s* and *t*

• Chain rule (Case 2):

Example 2. Let $z = \sin x \cos y$, $x = st^2$, $y = s^2 t$. Find $\partial z / \partial s$ and $\partial z / \partial t$.

4 Tree diagrams

- How can we remember the chain rule (Case 2)?
- Draw a tree diagram:

- To get $\partial z/\partial s$, follow all the paths from z to s:
- This idea can be extended in general to functions of 3 or more variables

Example 3. Write out the chain rule for the case where z = f(w, x, y), w = g(s, t), x = h(s, t), $y = \ell(s, t)$.

Example 4. The length ℓ , width w, and height h of a box change with time. At a certain instant the dimensions are $\ell = 1$ m, w = 2 m, and h = 2 m. ℓ and w are increasing at a rate of 2 m/s while h is decreasing at a rate of 3 m/s. Find the rate at which the length of the diagonal is changing at that instant.