Lesson 27. The Gradient Vector and Directional Derivatives

Warm up **Example 1.** Let $\vec{a} = 4\vec{i} + \vec{j}$ and $\vec{b} = \vec{i} - 2\vec{j}$. (a) Find $\vec{a} \cdot \vec{b}$. (b) Find a unit vector that has the same direction as \vec{b} . The gradient vector • The **gradient** of a function f(x, y) of two variables is • The gradient is a vector of partial derivatives **Example 2.** Let $f(x, y) = \sin y + e^{xy}$. Find (a) $\nabla f(x, y)$, (b) $\nabla f(1, 0)$. The directional derivative • Recall for a function f(x, y): • The partial derivative f_x is

• What about other directions?

• The partial derivative f_y is

• Let $u = \langle a, b \rangle$ be an arbitrary unit vector

• The **directional derivative** of f at (x, y) in the direction of a unit vector $\vec{u} = \langle a, b \rangle$ is

$$D_{\vec{u}}f(x,y) = \lim_{h\to 0} \frac{f(x+ha,y+hb) - f(x,y)}{h}$$

• The directional derivative $D_{\vec{u}}f(x,y)$ is

Example 3. The contour map of the temperature function T(x, y) is shown below (x and y are simply coordinates). Estimate the directional derivative of T at Reno in the southeasterly direction. What does this value mean?

To compute the directional derivative, we can use:
• Note: \vec{u} must be a unit vector
• If you are asked for the the directional derivative "in the direction of \vec{v} ," make sure \vec{v} is a unit vector. If it isn't, <u>make it one</u> .
Example 4. Find the directional derivative of $f(x, y) = \sin y + e^{xy}$ at the point $(1, 0)$ in the direction of the vector $\vec{v} = \langle -3, 4 \rangle$.
3 The gradient and directional derivative for functions of 3 variables
• The gradient of a function $f(x, y, z)$ of three variables is defined similarly:
$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y), f_z(x,y) \rangle$
• The directional derivative of f at (x, y, z) in the direction of a unit vector \vec{u} can be computed using
$D_{\vec{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \vec{u}$
• The directional derivative $D_{\vec{u}}f(x,y,z)$ is
Example 5. Find the directional derivative of $f(x, y, z) = \ln(3x + 6y + 9z)$ at point $(1, 1, 1)$ in the direction of $\vec{v} = \langle 2, 6, 3 \rangle$.