Lesson 28. Maximizing the Directional Derivative

0 Warm up

Example 1. Use the figure below to estimate $D_{\vec{u}}f(2,2)$.

1 Maximizing the directional derivative

- From last time: in words, the directional derivative of *f* at (x, y) in the direction of unit vector \vec{u} is
- Questions:
 - In which direction does *f* change the fastest? (steepest ascent or descent)
 - What is this maximum rate of change?
- **Important theorem:** (*f* is a function of 2 or 3 variables)
 - The maximum value of $D_{\vec{u}}f$ is $|\nabla f|$
 - The maximum value occurs when \vec{u} is in the same direction as ∇f

• As a result, the gradient is

Example 2. Let $f(x, y) = xe^{y}$.

- (a) Find the rate of change of *f* at the point P(2, 0) in the direction from *P* to $Q(\frac{1}{2}, 2)$.
- (b) In what direction does f have the maximum rate of change? What is this maximum rate of change?

2 On your own

Example 3. Find the directional derivative of $f(x, y) = \sqrt{xy}$ at P(2, 8) in the direction of Q(5, 4).

Example 4. Let $f(x, y) = \sqrt{x^2 + y^2 + z^2}$. Find the maximum rate of change of *f* at (3, 6, -2) and the direction in which it occurs.

Example 5. Find all points at which the direction of fastest change of the function $f(x, y) = x^2 + y^2 - 2x - 4y$ is $\vec{i} + \vec{j}$. Hint. Your answer should be an equation in x and y.