SM223 – Calculus III with Optimization Asst. Prof. Nelson Uhan

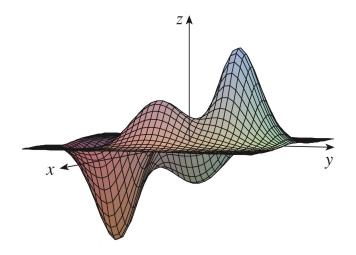
Lesson 31. Local Minima and Maxima

0 Review

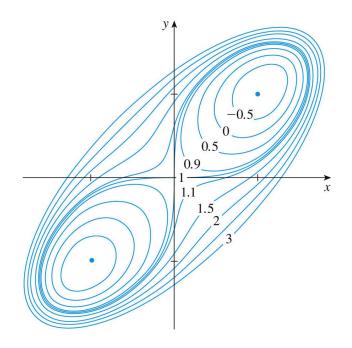
Example 1. The temperature at a point (x, y, z) is given by

$$T(x, y, z) = 200e^{-x^2 - 3y^2 - 9z^2}$$

where *T* is measured in $^{\circ}$ C and *x*, *y*, *z* in meters.


- (a) Find the rate of change of temperature at the point P(2, -1, 2) in the direction toward the point (3, -3, 3).
- (b) In which direction does the temperature increase fastest at *P*?
- (c) Find the maximum rate of increase at *P*.

1 Local minima and maxima

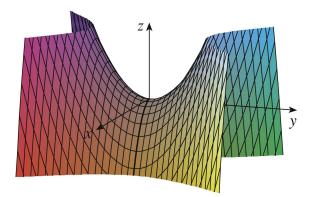

- Let *f* be a function of two variables
- (a, b) is a **local maximum** of f if $f(a, b) \ge f(x, y)$ for all (x, y) "close" to (a, b)

• f(a, b) is a local maximum value

- f has a **local minimum** at (a, b) if $f(a, b) \le f(x, y)$ for all (x, y) "close" to (a, b)
 - f(a, b) is a local minimum value

Example 2. The contour map for $f(x, y) = x^4 + y^4 - 4xy + 1$ is shown below. Find the local maxima and minima of *f*.

2 Critical points: how to find local minima and maxima


• (a, b) is a **critical point** of f if

or if one of these partial derivatives does not exist

- If (*a*, *b*) is a local minimum or maximum, then (*a*, *b*) is a critical point
- Finding local minima/maxima of *f*:
 - 1. Find all critical points of f
 - 2. Categorize each critical point using the second derivatives test:

• Let
$$D(a, b) = f_{xx}(a, b)f_{yy}(a, b) - [f_{xy}(a, b)]^2$$

• If $D > 0$ and $f_{xx}(a, b) > 0$, then (a, b) is a of f
• If $D > 0$ and $f_{xx}(a, b) < 0$, then (a, b) is a of f
• If $D < 0$, then (a, b) is a of f
• If $D < 0$, then (a, b) is a of f
• If $D = 0$, the test gives no information

- Saddle points
 - Highest point in one direction, lowest point in the other direction
 - Graphically:

- Saddle points look like hyperbolas in contour maps (see (0, 0) in Example 2)
- Solving systems of equations with the TI-nspire CX:
 - Press Menu
 - Select Algebra
 - Select Solve System of Equations
 - Select Solve System of Equations...

Example 3. Find the local minima and maxima and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1$.