Lesson 36. Lagrange Multipliers

1 Today...

• Another way to solve optimization problems with one equality constraint

2 Lagrange multipliers for optimization with one equality constraint

- Convention: "maximum" and "minimum" refer to "absolute maximum" and "absolute minimum" resp.
- Idea:

- Maxima and minima occur when the level curves of f(x, y) and the constraint g(x, y) have a common tangent line
- In other words, the gradients of f and g are parallel:

- To find the maximum and minimum values of f(x, y) subject to the constraint g(x, y) = k:
 - 1. Find all values of x, y, λ such that

or equivalently			

- 2. Evaluate f at all the points (x, y) you found in step 1.
 - \diamond Largest of these values = maximum value of f
 - \diamond Smallest of these values = minimum value of f
- (Assumes extreme values exist and $\nabla g \neq \vec{0}$ on the curve g(x, y) = k)
- Works in a similar way for finding max/min values of f(x, y, z) subject to g(x, y, z) = k
- Suggestion: use w for λ on the calculator

					$e \text{ ellipse } x^2 + 4y^2 = 4.$
xample 2	. Find the absolute	maximum and mi	inimum values of j	f(x, y) = xyz subjection	ect to the constraint
+2y+3z	<i>z</i> = 6.				
+2y+3z	<i>x</i> = 6.				
+2y+3z	z = 6.				
+2y+3z	z = 6.				
+2y+3z	z = 6.				
z + 2y + 3z	<i>x</i> = 6.				
+2y+3z	<i>x</i> = 6.				
+2y+3z	z = 6.				
+2y+3z	z = 6.				
z + 2y + 3z	z = 6.				
z + 2y + 3z	z = 6.				
z + 2y + 3z	z = 6.				
z + 2y + 3z	z = 6.				
z + 2y + 3z	z = 6.				
z + 2y + 3z	z = 6.				
z + 2y + 3z	z = 6.				
z + 2y + 3z	z = 6.				

Example 3. Find the volume of the largest rectangular box in the first orthant with three faces in the coordinate planes and one vertex in the plane $x + 2y + 3z = 6$.						