Lesson 37. Lagrange Multipliers, cont. | 1 | Today | - | |---|-------|-----| | 1 | Today | ·•• | - Lagrange multipliers and optimization over closed bounded sets - Lagrange multipliers for optimization with two equality constraints - Homework review #### 2 Warm up | Example I. | e I. Find the absolute minimum and maximum values of the function $f(x, y) =$ | $= x^2 + 2y^2$ on the circle | |------------------|--|------------------------------| | $x^2 + y^2 = 1.$ | = 1. | #### 3 Lagrange multipliers and optimization over closed bounded sets - Recall: to find the absolute minimum and maximum values of a continuous function *f* on a closed bounded set *C*: - 1. Draw a picture of *C* - 2. Find the values of *f* at the critical points of *f* in *C* - 3. Find the extreme values of f on the boundary of C - 4. Largest value from steps 2 and 3 = absolute maximum value Smallest value from steps 2 and 3 = absolute minimum value - If C can be expressed using a single inequality, Step 3 can be accomplished using Lagrange multipliers **Example 2.** Find the absolute minimum and maximum values of the function $f(x, y) = x^2 + 2y^2$ on the disk $x^2 + y^2 \le 1$. # 4 Lagrange multipliers for optimization with two equality constraints | | of Lagrange multipliers for two constraints | |-----------------|---| | | and the minimum and maximum values of $f(x, y, z)$ subject to the constraints $g(x, y, z) = k$. $h(x, y, z) = \ell$: | | 1. | Find all values of x , y , z , λ , μ such that | | | | | | | | | | | | or equivalently | | | | | | | | | | | 2. | Evaluate f at all the points (x, y, z) you found in step 1. | | | ♦ Largest of these values = maximum value of f ♦ Smallest of these values = minimum value of f | | o (As | sumes extreme values exist, ∇g and ∇h are not zero and not parallel on the constraints) | | o Sug | gestion: use w for λ and ν for μ on the calculator | | | and the absolute minimum and maximum values of $f(x, y, z) = x + 2y + 4z$ subject to the | | constraints x – | $y + z = 1$ and $x^2 + y^2 = 1$. | ### 5 Homework review | Example 4. Find th $x^3 + y^3 = 16$. | e absolute minimum and maximum values of $f(x, y) = e^{xy}$ subject to the constraint | |--|---| |