Lesson 41. Double Integrals over Rectangles

0 Warm up

Example 1. Find the value of

(a)
$$\sum_{i=2}^{4} i =$$

(b) $\sum_{i=1}^{3} \sum_{j=1}^{2} ij =$

1 Review: area and integrals

• The definite integral of a single-variable function:

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

2 Volume and double integrals

• Let *R* be a rectangle in the *xy*-plane:

 $R = [a,b] \times [c,d] = \{(x,y) : a \le x \le b, c \le y \le d\}$

- Let f(x, y) be a function of two variables
- What is the volume of the solid above *R* and below the graph of *f*?

- Idea:
 - Divide *R* into subrectangles of equal area ΔA
 - ♦ Grid with *m* columns (*x*-direction) and *n* rows (*y*-direction)
 - For each subrectangle R_{ij} :
 - ♦ Choose a **sample point** (x_{ij}^*, y_{ij}^*)
 - ♦ Compute the volume of the (thin) rectangular box with base R_{ij} and height $f(x_{ij}^*, y_{ij}^*)$.
 - $\circ~$ Add the volumes of all these rectangular boxes

- Estimated volume:
 - This is called a **double Riemann sum**
- The **double integral** of *f* over the rectangle *R* is
- How do we choose sample points in each subrectangle?
 - Upper right corner
 - Lower left corner
 - Midpoint rule: center of subrectangle
- If $f(x, y) \ge 0$, then the volume *V* of the solid that lies above the rectangle *R* and below the surface z = f(x, y) is

Example 2. Estimate the volume of the solid that lies above the square $R = [0,2] \times [0,2]$ and below $f(x, y) = 16 - x^2 - 2y^2$. Use a Riemann sum with m = 2 and n = 2. Use the upper right corners as sample points.

Example 3. Below is a contour map for a function f on the square $R = [0,3] \times [0,3]$. Use a Riemann sum with m = 3 and n = 3 to estimate the value of $\iint_R f(x, y) dA$. Use the midpoint rule to take sample points.

3 Average value

• The **average value** of a function of two variables defined on a rectangle *R* is

Example 4. Estimate the average value of the function *f* in Example 3 on *R*.