SM223 – Calculus III with Optimization Asst. Prof. Nelson Uhan

Lesson 44. Double Integrals Over General Regions, cont.

1 Properties of double integrals

• If $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries, then

$$\iint_D f(x,y) \, dA = \iint_{D_1} f(x,y) \, dA + \iint_{D_2} f(x,y) \, dA$$

Example 1. Write $\iint_D (2 - 2x - y) dA$ as the sum of 2 type I region iterated integrals, where *D* is the triangular region with vertices (0, 0), (2, 0), and (1, 1).

2 Problems

Problem 1. Evaluate $\iint_D x \cos y \, dA$, where *D* is bounded by y = 0, $y = x^2$, and y = 1.

Problem 2. Let *D* be the region enclosed by the lines y = x, y = 0, and x = 1. Set up $\iint_D x \, dA$ using both orders of integration. Evaluate the double integral using the order of integration of your choice.

Problem 3. Set up a double integral that represents the volume of the solid enclosed by $z = 1 - x^2 - y^2$ and z = 0 (i.e., the *xy*-plane). Use a calculator to evaluate the integral. Hints:

- Write an equation for where these two surfaces intersect. Graph this equation in the *xy*-plane. This should give you an idea of how to set up your limits of integration.
- TI-nspire CX tips:
 - Press the eff button to get a template for a definite integral.
 - You can put an integral template within another integral template to do double integrals.

Problem 4. Thought exercise: Let *D* be some region in the *xy*-plane. What does $\iint_D 1 dA$ represent? Explain.